prototype.js学习笔记一--共通的方法

本文介绍了Prototype.js这一JavaScript包的基本情况及其几个常用方法,包括$()、$F()、$A()、$H()和$R()等。通过具体实例展示了如何使用这些方法简化DOM操作及表单处理等工作。

摘自prototype.js开发者手册1.4版

1.简介

prototype.js 是一个由Sam Stephenson写的JavaScript包。这个构思奇妙编写良好的一段兼容标准的一段代码将承担创造胖客户端, 高交互性WEB应用程序的重担。轻松加入Web 2.0特性。

2.通用方法

$() 方法是在DOM中使用过于频繁的 document.getElementById() 方法的一个便利的简写,如:$('myDiv');

$F()方法返回任何输入表单控件的值,如文本框或下拉框。 这个方法可以传入元素的id或者元素自己。如:alert(  $F('userName')  );

$A()方法把接收到的参数转换成一个Array对象。例:

  1. <script>   
  2.    function showOptions(){   
  3.         var someNodeList = $('lstEmployees').getElementsByTagName('option');   
  4.         var nodes = $A(someNodeList);   
  5.   
  6.         nodes.each(function(node){   
  7.                 alert(node.nodeName + ': ' + node.innerHTML);   
  8.             });   
  9.     }   
  10. </script>  
  11.   
  12. "lstEmployees" size="10" >   
  13.     "5">Buchanan, Steven   
  14.     "8">Callahan, Laura   
  15.     "1">Davolio, Nancy   
  16.   
  17.   
  18. "button" value="Show the options" onclick="showOptions();" >   

$H()方法把对象转化成可枚举的貌似联合数组Hash对象.

  1. var a = { first: 10, second: 20,  third: 30   }; //数组排列   
  2. var h = $H(a);   
  3. alert(h.toQueryString()); //结果: first=10&second=20&third=30   

 

$R()方法是new ObjectRange(lowBound,upperBound,excludeBouds)的缩写

可以作个试验
  1. <script> function demoDollar_R(){ var range = $R(10, 20, false); range.each(function(value, index){ alert(value); }); } </script>  

Try.these()方法

Try.these() 方法使得实现当你想调用不同的方法直到其中的一个成功正常的这种需求变得非常容易, 他把一系列的方法作为参数并且按顺序的一个一个的执行这些方法直到其中的一个成功执行,返回成功执行的那个方法的返回值。

例如下面两个方法在不同浏览器中不一定哪个起作用,所以这样:
  1. function getXmlNodeValue(xmlNode){ 
  2.     return Try.these( 
  3.           function() {return xmlNode.text;}, 
  4.           function() {return xmlNode.textContent;) 
  5.     ); 
  6. }
同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值