Java对象克隆Clone

本文介绍了Java中对象的深拷贝和浅拷贝概念,并详细解释了如何利用Object类中的clone()方法实现对象的拷贝。此外,文章还讨论了实现Cloneable接口的重要性及其对克隆过程的影响。

对象的拷贝[深拷贝和浅拷贝]:


在实际编程过程,有时候我们会遇到一种情况:当你有一个对象A,在某一个时刻,A已经保存了对应的属性值,而且这些值本身是有效的,这个时候可能需要一个和A完全相同的对象B,并且当B里面的属性值发生变化的时候,A中的属性值不受影响,可以理解为A和B独立,但是B的初始化不是按照我们平时创建该对象的时候的初始化操作,B的初始化数据完全来自A。对Java存储模型了解的人都明白,在Java里面如果针对两个对象引用采取赋值操作的时候,仅仅是让两个引用指向了同一对象,如果其中一个引用里面的对象属性改变的时候会影响另外一个对象属性跟着改变,所以Java语言本身的对象赋值语句是不能完成上边的需求的。


在这种时候,就需要用到Object类里面的通用方法clone(),这里需要说明的是:通过clone()方法创建的对象是一个新对象,它可以认为是源对象的一个拷贝,但是在内存堆中,JVM会为这个拷贝分配新的对象存储空间来存放该对象的所有状态;

class AClass implements Cloneable {
	public int a = 0;

	public Object clone() {
		AClass o = null;
		try {
			o = (AClass) super.clone();
		} catch (CloneNotSupportedException ex) {
			ex.printStackTrace();
		}

		return o;
	}
}
 

自己写个例子验证一下吧,只需要调用对象的clone()方法就可以复制出一个新对象,并且和原有引用不相同;


在对象的clone过程,需要注意的几点有:


  • 希望能够提供对象clone功能的类必须实现Cloneable接口,这个接口位于java.lang包里面
  • 希望提供对象clone功能的类必须重载clone()方法,在重载过程可以看到这句话:super.clone();也就是说,不论clone类的继承结构如何,我们在对象拷贝的时候都直接或简介调用了Objectclone()方法。而且细心留意可以看到Objectclone方法是protected域的,也就是说这个方法只有Object的子类可以调用,而在重载的时候将clone方法修饰符改为public
  • 还有一点很重要就是Object源代码里面的clone()方法是native方法,一般而言,对JVM来说,native方法的效率远比java中的普通方法高,这就是为什么我们在复制一个对象的时候使用Objectclone()方法,而不是使用new的方式。
  • Cloneable接口和我们在编写IO程序的时候序列化接口一样,只是一个标志,这个接口是不包含任何方法的,这个标志主要是为了检测Object类中的clone方法,若我们定义的类想要实现拷贝功能,但是没有实现该接口而调用Objectclone方法,那么就会出现语句中catch块里面的异常错误,抛出CloneNotSupportedException
【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制实现有限时间内的共识,并提供了相应的Matlab代码实现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程实用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和实现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开,重点研究其动力学建模与控制系统设计。通过Matlab代码与Simulink仿真实现,详细阐述了该无人机的运动学与动力学模型构建过程,分析了螺旋桨倾斜机构如何提升无人机的全向机动能力与姿态控制性能,并设计相应的控制策略以实现稳定飞行与精确轨迹跟踪。文中涵盖了从系统建模、控制器设计到仿真验证的完整流程,突出了全驱动结构相较于传统四旋翼在欠驱动问题上的优势。; 适合人群:具备一定控制理论基础和Matlab/Simulink使用经验的自动化、航空航天及相关专业的研究生、科研人员或无人机开发工程师。; 使用场景及目标:①学习全驱动四旋翼无人机的动力学建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真技术;③深入理解螺旋桨倾斜机构对飞行性能的影响及其控制实现;④为相关课题研究或工程开发提供可复现的技术参考与代码支持。; 阅读建议:建议读者结合提供的Matlab代码与Simulink模型,逐步跟进文档中的建模与控制设计步骤,动手实践仿真过程,以加深对全驱动无人机控制原理的理解,并可根据实际需求对模型与控制器进行修改与优化。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值