具有模糊字母识别能力的bp网络实现

本文介绍了一个使用BP神经网络进行字母识别的程序。该程序能够处理带噪信号,并通过多次训练提高识别准确性。文章详细展示了从数据准备到网络训练及测试的全过程。

字母识别程序,采用了bp网络,具有一定的模糊识别能力:

%recognize.m用于字母识别 [alphabet,targets] = prodat; P =alphabet; % alphabet = [ letterA, letterB, ..., letterZ ]; T = targets; % targets = eye(26); [R,Q] = size(P); % 神经元个数 S1 = 10; % 求T的大小,此时他的列数与P的列数为一致 [S2,Q] = size(T); %创建网络 net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx'); net.LW{2,1} = net.LW{2,1}*0.01; net.b{2} = net.b{2}*0.01; % 无噪声字母识别网络的训练 net.performFcn = 'sse'; %执行函数为误差平方和函数 net.trainParam.epochs=800; %最大训练步长 net.trainParam.lr=0.01; %学习率 net.trainParam.lr_inc =1.05; %增长的学习率 net.trainParam.lr_dec =0.7; net.trainParam.goal=0.1; %执行函数目标值 net.trainParam.mc =0.9; %附加动量因子 net.trainParam.min_grad=1e-10; %最小执行梯度 net.trainParam.show = 50; % P = alphabet; % T = targets; [net,tr] = train(net,P,T); noisyJ = alphabet(:,10)+randn(35,1) * 0.2; A2 = sim(net,noisyJ); A2 = compet(A2); % compet is a transfer function. Transfer functions calculate a layer's output from its net input. % compet(N) takes one input argument, % N - S x Q matrix of net input (column) vectors. % and returns output vectors with 1 where each net input vector has its maximum value, and 0 elsewhere answer = find(compet(A2) == 1); % indices = find(X) returns the linear indices corresponding to the nonzero entries of the array X. % If none are found, find returns an empty, 0-by-1 matrix. % In general, find(X) regards X as X(:), % which is the long column vector formed by concatenating the columns of X. % Some operations on a vector x = [11 0 33 0 55]'; % find(x) % % ans = % % 1 % 3 % 5 % % find(x == 0) % % ans = % % 2 % 4 % % find(0 < x & x < 10*pi) % % ans = % % 1 figure(2); plotchar(alphabet(:,answer)); figure(3); plotchar(noisyJ); % %%%%%%%%%%%%%%%========================================================= %%%%%%%%%%% 具有噪声的输入识别网络的训练,共循环10次,开始 netn = net; netn.trainParam.goal = 0.1; %目标误差. netn.trainParam.epochs = 300; %最大训练步长. for pass=1:10 fprintf('Pass = %.0f/n',pass); T = [targets targets targets targets]; P = [alphabet, alphabet, ... (alphabet + randn(R,Q)*0.1), ... (alphabet + randn(R,Q)*0.2)]; [netn,tr] = train(netn,P,T); end %%%%%%%%%%% 具有噪声的输入识别网络的训练,共循环10次,结束 noisyJ = alphabet(:,10)+randn(35,1) * 0.2; B2 = sim(netn,noisyJ); B2 = compet(B2); answer = find(compet(B2) == 1); figure(4); plotchar(alphabet(:,answer)); figure(5); plotchar(noisyJ); %%%%%%% 再次用无噪声字母训练识别网络,开始 netn.trainParam.goal = 0.1; % 均方误差目标. netn.trainParam.epochs = 500; % 最大训练步长 net.trainParam.show = 5; % 训练中显示的频率 P = alphabet; T = targets; [netn,tr] = train(netn,P,T); %%%%%%% 再次用无噪声字母训练识别网络,结束

prodat.m程序用来产生26个字母的矩阵形式,及其所对应的目标矩阵表示形式,具体如下:

% prodat.m recognize.m调用的字母产生程序 function[alphabet,targets] = prodat() % Returns: % ALPHABET - 35x26 matrix of 5x7 bit maps for each letter. % TARGETS - 26x26 target vectors. letterA = [0 0 1 0 0 ... 0 1 0 1 0 ... 0 1 0 1 0 ... 1 0 0 0 1 ... 1 1 1 1 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ]'; letterB = [1 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 1 1 1 0 ]'; letterC = [0 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 0 1 ... 0 1 1 1 0 ]'; letterD = [1 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 1 1 1 0 ]'; letterE = [1 1 1 1 1 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 1 1 1 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 1 1 1 1 ]'; letterF = [1 1 1 1 1 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 1 1 1 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ]'; letterG = [0 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 1 1 ... 1 0 0 0 1 ... 0 1 1 1 0 ]'; letterH = [1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 1 1 1 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ]'; letterI = [0 1 1 1 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 1 1 1 0 ]'; letterJ = [1 1 1 1 1 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 1 0 1 0 0 ... 0 1 0 0 0 ]'; letterK = [1 0 0 0 1 ... 1 0 0 1 0 ... 1 0 1 0 0 ... 1 1 0 0 0 ... 1 0 1 0 0 ... 1 0 0 1 0 ... 1 0 0 0 1 ]'; letterL = [1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 1 1 1 1 ]'; letterM = [1 0 0 0 1 ... 1 1 0 1 1 ... 1 0 1 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ]'; letterN = [1 0 0 0 1 ... 1 1 0 0 1 ... 1 1 0 0 1 ... 1 0 1 0 1 ... 1 0 0 1 1 ... 1 0 0 1 1 ... 1 0 0 0 1 ]'; letterO = [0 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 0 1 1 1 0 ]'; letterP = [1 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 1 1 1 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ... 1 0 0 0 0 ]'; letterQ = [0 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 1 0 1 ... 1 0 0 1 0 ... 0 1 1 0 1 ]'; letterR = [1 1 1 1 0 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 1 1 1 0 ... 1 0 1 0 0 ... 1 0 0 1 0 ... 1 0 0 0 1 ]'; letterS = [0 1 1 1 0 ... 1 0 0 0 1 ... 0 1 0 0 0 ... 0 0 1 0 0 ... 0 0 0 1 0 ... 1 0 0 0 1 ... 0 1 1 1 0 ]'; letterT = [1 1 1 1 1 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ]'; letterU = [1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 0 1 1 1 0 ]'; letterV = [1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 0 1 0 1 0 ... 0 0 1 0 0 ]'; letterW = [1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 0 0 1 ... 1 0 1 0 1 ... 1 1 0 1 1 ... 1 0 0 0 1 ]'; letterX = [1 0 0 0 1 ... 1 0 0 0 1 ... 0 1 0 1 0 ... 0 0 1 0 0 ... 0 1 0 1 0 ... 1 0 0 0 1 ... 1 0 0 0 1 ]'; letterY = [1 0 0 0 1 ... 1 0 0 0 1 ... 0 1 0 1 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ... 0 0 1 0 0 ]'; letterZ = [1 1 1 1 1 ... 0 0 0 0 1 ... 0 0 0 1 0 ... 0 0 1 0 0 ... 0 1 0 0 0 ... 1 0 0 0 0 ... 1 1 1 1 1 ]'; alphabet = [letterA,letterB,letterC,letterD,letterE,letterF,letterG,letterH,... letterI,letterJ,letterK,letterL,letterM,letterN,letterO,letterP,... letterQ,letterR,letterS,letterT,letterU,letterV,letterW,letterX,... letterY,letterZ]; targets = eye(26); % Y = eye(n) returns the n-by-n identity matrix. % Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1's on the diagonal and 0's elsewhere. % Y = eye(size(A)) returns an identity matrix the same size as A. % eye(m, n, classname) or eye([m,n],classname) is an m-by-n matrix % with 1's of class classname on the diagonal and zeros of class classname elsewhere. % classname is a string specifying the data type of the output. % classname can have the following values: % 'double', 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', or 'uint32'.

内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过分析当前企业面临的资源分散、内容同质、效果难量化等核心痛点,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特点与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节点定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算分配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节点(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算分配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
先展示下效果 https://pan.quark.cn/s/987bb7a43dd9 VeighNa - By Traders, For Traders, AI-Powered. Want to read this in english ? Go here VeighNa是一套基于Python的开源量化交易系统开发框架,在开源社区持续不断的贡献下一步步成长为多功能量化交易平台,自发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。 在使用VeighNa进行二次开发(策略、模块等)的过程中有任何疑问,请查看VeighNa项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验分享】板块分享你的使用心得! 想要获取更多关于VeighNa的资讯信息? 请扫描下方二维码添加小助手加入【VeighNa社区交流微信群】: AI-Powered VeighNa发布十周年之际正式推出4.0版本,重磅新增面向AI量化策略的vnpy.alpha模块,为专业量化交易员提供一站式多因子机器学习(ML)策略开发、投研和实盘交易解决方案: :bar_chart: dataset:因子特征工程 * 专为ML算法训练优化设计,支持高效批量特征计算与处理 * 内置丰富的因子特征表达式计算引擎,实现快速一键生成训练数据 * Alpha 158:源于微软Qlib项目的股票市场特征集合,涵盖K线形态、价格趋势、时序波动等多维度量化因子 :bulb: model:预测模型训练 * 提供标准化的ML模型开发模板,大幅简化模型构建与训练流程 * 统一API接口设计,支持无缝切换不同算法进行性能对比测试 * 集成多种主流机器学习算法: * Lass...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值