在DWR调用的java代码中使用Session,Request,Response等

本文介绍了DWR Java API的基本使用方法,重点讲解了WebContext和WebContextFactory两个核心类的功能及应用场景。通过这两个类可以方便地访问到标准的HTTP servlet对象,如HttpServletRequest和HttpServletResponse等。此外,还介绍了一种无需依赖DWR即可获取HTTP servlet对象的方法。

DWR Java API

There are only 2 Java classes that you commonly need to depend on within DWR as a user - WebContext and WebContextFactory. In DWR 1.x these are in the uk.ltd.getahead.dwr package, for DWR 2.0 onwards they are in org.directwebremoting. These classes give you to access to the standard HTTP servlet objects:

  • HttpServletRequest
  • HttpServletResponse
  • HttpSession
  • ServletContext
  • ServletConfig

You use WebContext like this:

import uk.ltd.getahead.dwr.WebContext;
import uk.ltd.getahead.dwr.WebContextFactory;
///
WebContext ctx = WebContextFactory.get();
req = ctx.getHttpServletRequest();

It is important that you treat the HTTP request and response as read-only. While HTTP headers might get through OK, there is a good chance that some browsers will ignore them (IE ignores cache pragmas for example) Any attempt to change the HTTP body WILL cause DWR errors.

WebContext uses a ThreadLocal variable so you can use the line above anywhere in your code (so long as it has been fired off by DWR).

See also the JavaDoc for DWR in general, or the specific page for WebContext.

WebContext replaces ExecutionContext which is deprecated as of DWR 1.1.

Alternative Method

It is possible to get access to the HTTP servlet objects without writing code that depends on DWR - just have the needed parameter (i.e. HttpServletRequest, HttpServletResponse, HttpSession, ServletContext or ServletConfig) declared on your method. DWR will not include it on the generated stub and upon a call of the method it will fill it in automagically.

For example if you have remoted a class like this:

public class Remote {
  public void method(int param, ServletContext cx, String s) { ... }
}

Then you will be able to access it from Javascript just as though the ServletContext parameter was not there:

Remote.method(42, "test", callback);

DWR will do the work of filling in the parameter for you.

There is one slight caveat with this method. You should ensure you are not using the 'callback function as first parameter' idiom, instead use the 'callback as last parameter' or 'callback in meta-data object' idioms. See the scripting introduction

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性先进性。; 适合人群:具备一定控制理论基础Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值