在DWR调用的java代码中使用Session,Request,Response等

本文介绍了DWR Java API的基本使用方法,重点讲解了WebContext和WebContextFactory两个核心类的功能及应用场景。通过这两个类可以方便地访问到标准的HTTP servlet对象,如HttpServletRequest和HttpServletResponse等。此外,还介绍了一种无需依赖DWR即可获取HTTP servlet对象的方法。

DWR Java API

There are only 2 Java classes that you commonly need to depend on within DWR as a user - WebContext and WebContextFactory. In DWR 1.x these are in the uk.ltd.getahead.dwr package, for DWR 2.0 onwards they are in org.directwebremoting. These classes give you to access to the standard HTTP servlet objects:

  • HttpServletRequest
  • HttpServletResponse
  • HttpSession
  • ServletContext
  • ServletConfig

You use WebContext like this:

import uk.ltd.getahead.dwr.WebContext;
import uk.ltd.getahead.dwr.WebContextFactory;
///
WebContext ctx = WebContextFactory.get();
req = ctx.getHttpServletRequest();

It is important that you treat the HTTP request and response as read-only. While HTTP headers might get through OK, there is a good chance that some browsers will ignore them (IE ignores cache pragmas for example) Any attempt to change the HTTP body WILL cause DWR errors.

WebContext uses a ThreadLocal variable so you can use the line above anywhere in your code (so long as it has been fired off by DWR).

See also the JavaDoc for DWR in general, or the specific page for WebContext.

WebContext replaces ExecutionContext which is deprecated as of DWR 1.1.

Alternative Method

It is possible to get access to the HTTP servlet objects without writing code that depends on DWR - just have the needed parameter (i.e. HttpServletRequest, HttpServletResponse, HttpSession, ServletContext or ServletConfig) declared on your method. DWR will not include it on the generated stub and upon a call of the method it will fill it in automagically.

For example if you have remoted a class like this:

public class Remote {
  public void method(int param, ServletContext cx, String s) { ... }
}

Then you will be able to access it from Javascript just as though the ServletContext parameter was not there:

Remote.method(42, "test", callback);

DWR will do the work of filling in the parameter for you.

There is one slight caveat with this method. You should ensure you are not using the 'callback function as first parameter' idiom, instead use the 'callback as last parameter' or 'callback in meta-data object' idioms. See the scripting introduction

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值