题目所给的函数就是递归函数,要是按照函数本身写递归式,由于子问题的扩展速度太快扩展范围太大,结果肯定是TLE。
因此,为了减少重复计算,引入一个三维数组。每次从w(a,b,c)开始递推时,在子问题中只要s[x][y][z]有返回值就记录一次;如果在递归过程中,遇到s[x][y][z]已被赋值,则在此子问题中不再进行递归,直接返回值s[x][y][z].
小结:这道题是很地道的DP,由于子问题过多,可以将问题的结果保存起来,避免重复递归。问题虽然简单,但包含很经典的dp思想。
Source Code Problem: 1579 User: moxiaomomo Memory: 200K Time: 0MS Language: C++ Result: Accepted Source Code #include <iostream> #include <algorithm> using namespace std; int powers[21]={1,2,4,8,16,32,64,128,256,512,1024, 2048,4096,8192,16384,32768,65536,131072, 262144,524288,1048576}; int s[21][21][21]; int w(int a1,int b1,int c1) { if(a1<=0||b1<=0||c1<=0) return 1; if(a1>20||b1>20||c1>20) return 1048576; if(a1<=b1||a1<=c1) return powers[a1]; if(s[a1-1][b1][c1]==0)s[a1-1][b1][c1]=w(a1-1,b1,c1); if(s[a1-1][b1-1][c1]==0)s[a1-1][b1-1][c1]=w(a1-1,b1-1,c1); if(s[a1-1][b1][c1-1]==0)s[a1-1][b1][c1-1]=w(a1-1,b1,c1-1); if(s[a1-1][b1-1][c1-1]==0)s[a1-1][b1-1][c1-1]=w(a1-1,b1-1,c1-1); return s[a1-1][b1][c1]+s[a1-1][b1-1][c1]+ s[a1-1][b1][c1-1]-s[a1-1][b1-1][c1-1]; } int main() { int a,b,c,sum=1; memset(s,0,sizeof(s)); s[20][20][20]=1048576; while(scanf("%d%d%d",&a,&b,&c)&&(a!=-1||b!=-1||c!=-1)) { if(a<0||b<0||c<0)sum=1; else if(a>20||b>20||c>20)sum=1048576; else if(s[a][b][c]==0)sum=s[a][b][c]=w(a,b,c); else sum=s[a][b][c]; printf("w(%d, %d, %d) = %d/n",a,b,c,sum); } return 0; }