[转]hibernate n+1问题

本文探讨了Hibernate框架中常见的N+1查询问题,详细解释了该问题产生的原因及其对数据库性能的影响。并介绍了两种解决方案:一是通过设置关联加载为懒加载模式(lazy=true),仅在需要时查询关联数据;二是利用二级缓存来提高查询效率,减少重复查询。
Hibernate中常会用到set,bag等集合表示1对多的关系, 在获取实体的时候就能根据关系将关联的对象或者对象集取出, 还可以设定cacade进行关联更新和删除。这不得部说hibernate的orm做得很好,很贴近oo的使用习惯了。
但是对数据库访问还是必须考虑性能问题的, 在设定了1对多这种关系之后, 查询就会出现传说中的n+1问题。
1)1对多,在1方,查找得到了n个对象, 那么又需要将n个对象关联的集合取出,于是本来的一条sql查询变成了n+1条
2)多对1,在多方,查询得到了m个对象,那么也会将m个对象对应的1方的对象取出, 也变成了m+1

怎么解决n+1问题?
1)lazy=true, hibernate3开始已经默认是lazy=true了;lazy=true时不会立刻查询关联对象,只有当需要关联对象(访问其属性,非id字段)时才会发生查询动作。
2)二级缓存, 在对象更新,删除,添加相对于查询要少得多时, 二级缓存的应用将不怕n+1问题,因为即使第一次查询很慢,之后直接缓存命中也是很快的。
不同解决方法,不同的思路,第二条却刚好又利用了n+1。

转自:http://spiritfrog.iteye.com/blog/
基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值