单反数码相机(百科名片)

单反数码相机

百科名片
单反数码相机就是指单镜头反光数码相机,即Digital数码、Single单独、Lens镜头、Reflex反光的英文缩写DSLR。市场中的代表机型常见于尼康、佳能、宾得、富士等。此类相机一般体积较大,比较重。

一、基本概念

  单反就是指单镜头反光,即SLR(Single Lens Reflex),这是当今最流行的取景系统,大多数35mm照相机都采用这种取景器。在这种系统中,反光镜和棱镜的独到设计使得摄影者可以从取景器中直接观察到通过镜头的影像。因此,可以准确地看见胶片即将“看见”的相同影像。

二、性能简介

  使用 电子取景器EVF的机型,也归入单反类,但一般加注“类似”,或注明是EVF取景,如 奥林巴斯C-2100UZ、富士Finepix 6900等。 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的 对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过 LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。
  在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件( CCD或者 CMOS)前面的快门幕帘便同时打开,通过镜

Nikon D90

头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。 单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和 胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。
  单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。
  另外,现在单反数码相机都定位于数码相机中的高端产品,因此在关系 数码相机摄影质量的 感光元件(CCD或者CMOS)的面积上,单反数码的面积远远大于普通数码相机,这使得单反数码相机的每个 像素点的感光面积也远远大于普通数码相机,因此每个像素点也就能表现出更加细致的亮度和色彩范围,使单反数码相机的摄影质量明显高于普通数码相机。
  单反系统的心脏是一块活动的反光镜,它呈45°角安放在胶片平面的前面。进入镜头的光线由反光镜向上反射到一块毛玻璃上。为了校正这个缺陷,现在的眼平式SLR照相机在毛玻璃的上方安装了一个五棱镜。这种棱镜将光线多次反射改变光路,将影像其送至目镜,这时地影像就是上下正立且左右校正的了。取景时,进入照相机的大部分光线都被反光镜向上反射到五棱镜,几乎所有SLR照相机的快门都直接位于胶片的前面(由于这种快门位于胶片平面,因而称作焦平面快门),取景时,快门闭合,没有光线到达胶片。当按下快门按钮时,反光镜迅速向上翻起让开光路,同时快门打开,于是光线到达胶片,完成拍摄。然后,大多数照相机中的反光镜会立即复位。
  反光镜的这一必要的翻起动作同时也带来了一些其他问题:
  一、拍摄照片的瞬间,取景器会被挡住。由于被遮挡的时间只是刹那间的事情,因此这对于立即复位的反光镜来说并不是什么主要问题。但是,又引出了一些偶然性问题。例如,在使用频闪光拍摄时,将不能通过取景器看到频闪装置是否闪光正常。
  二、反光镜运动的噪声。这在需要安静的场所这可能会成为重要问题。由于测距取景式照相机中没有突然阻挡光路的移动反光镜,所以不会产生这种噪声。
  三、相机的震动,即由反光镜的翻起动作所造成的照相机整体的运动。假设用1/500秒的快门速度进行拍摄,那么不必担心。这种震动不至被察觉。但是,如果以较低的快门速度拍摄一幅精确照片的话,比如在微弱的光线下使用远摄镜头进行拍摄时,这种震动对成像就可能很成问题。
  除此之外,使用SLR取景还存在另一个问题。比如我们想使用f/32这样的小光圈进行拍摄,而光圈f/32允许进入镜头的光线是非常微弱的,这会导致取景器中看到的影像也很暗淡,可能会难以聚焦,甚至根本无法进行聚焦。
  实际上,SLR的解决方案相当巧妙, 它会先使用镜头的最大孔径让我们完成取景和聚焦,按下快门时,镜头的光圈会立刻收缩到预置的孔径,完成胶片曝光,在曝光完成的瞬间,光圈又会开到它的最大孔径,准备下一次拍摄。

三、工作原理

  单反数码相机就是指单镜头反光数码相机,即DSLR(Digital Single Lens Reflex)。
  在这种系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。
  在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或者CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。
  另外,单反数码相机还有一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。
  还有就是现在单反数码相机都定位于数码相机中的高端产品,因此在关系数码相机摄影质量的感光元件(CCD或者CMOS)的面积上,单反数码的面积远远大于普通数码相机,这使得单反数码相机的每个像素点的感光面积也远远大于普通数码相机,因此每个像素点也就能表现出更加细致的亮度和色彩范围,使单反数码相机的摄影质量明显高于普通数码相机。

四、适用对象

  可以很简单的说,单反数码相机并不是适合任何用户,首先具有必要的专业知识是一方面,其次要用好单反数码相机必须搭配不同型号的镜头,这很可能使镜头的花费高于购买数码相机的费用。
  而且在外出旅游时,带上镜头群的相机包的重量也远高于一个普通相机,会成为旅游过程的严重负担。另外单反数码相机在更换镜头时都会让感光元件直接暴露在空气中,因此使用时也必须要注意相机的保养。所以,单反数码相机虽然拍摄质量更高,而且现在价格也下降了很多,但也并非适合所有的用户,用户购买时还是要按需选择。
  喜欢探察微观世界的摄影爱好者、专业摄影师、体育摄影师、记者、新闻记录、商务活动记录、享受手动操作乐趣的单反新玩家、摄影发烧友等是单反数码相机的忠实拥趸。

五、单反数码相机的五大优势

    

1、图像传感器的优势


  
 对于数码相机来说,感光元件是最重要的核心部件之一,它的大小直接关系到拍摄的效果,要想取得良好的拍摄效果,最有效的办法其实不仅仅是提高像素数,更重要的是加大CCD或者CMOS的尺寸。无论是采用CCD还是CMOS, 数码单反相机传感器尺寸都远远超过了普通数码相机。因此,数码单反的传感器像素数不仅比较高(目前最低600万),而且单个像素面积更是民用数码相机的四五倍,因此拥有非常出色的信噪比,可以记录宽广的亮度范围。600万像素的数码单反相机的图像质量绝对超过采用2/3英寸CCD的800万像素的数码相机的图像质量。
  

2、丰富的镜头选择


  
  数码相机作为一种光、机、电一体化的产品,光学成像系统的性能对最终成像效果的影响也是相当重要的,拥有一支优秀的 镜头对于成像的意义绝不亚于图像传感器的选择。同时,随着图像传感器、图像引擎和存储器件的成本不断降低, 光学镜头在数码相机成本中所占的比重也越来越大。各品牌都拥有庞大的自动对焦镜头群,从超广角到超长焦,从 微距到柔焦,用户可以根据自己的需求选择配套镜头。同时,由于传感器面积较大,数码单反相机比较容易得到出色的成像。
  

单反数码相机镜头

 

3、迅捷的响应速度


   数码单反的开机速度只有几百毫秒,连拍速度也很快。而消费级相机则是纯 电子快门,存在严重的 快门时滞问题,这一弱点堪称消费级数码相机的软肋,因此它拍 静物尚可,但不适合抓拍运动物体——你所得成像,往往不是你按下快门时的那个动作。响应速度正是数码单反的优势,由于其对焦系统独立于成像器件之外,它们基本可以实现和传统单反一样的响应速度,在新闻、体育摄影中让用户得心应手。
  

4、卓越的手控能力


   虽说如今的相机自动拍摄的功能是越来越强了,但是拍摄时由于环境、拍摄对象的情况是千变万化的,因此一个对摄影有一定要求的用户是不会仅仅满足于使用自动模式拍摄的。数码单反可以方便地进行手动变焦、手动设定拍摄参数等等,还可以进行一些特殊的拍摄。而很多消费级相机都是自动的(特别是 卡片机),多数相机没有手动变焦环,要靠马达自动变焦,因为变焦和对焦的速度慢,会丧失很多拍摄良机。很多人认为自动比手动好,实在是一个误区,只有自动功能而没有手动功能的相机往往是低端相机,因为自动的精确性和速度,远远达不到手动那么高。
  

5、丰富的附件


   数码单反和普通数码相机一个重要的区别就是它具有很强的扩展性,除了能够继续使用 偏振镜等附加镜片和可换镜头之外,还可以使用专业的闪光灯,以及其它的一些辅助设备,以增强其适应各种环境的能力。比如大功率闪光灯、环型微距闪光灯、电池手柄、定时遥控器,这些丰富的附件让数码单反可以适应各种独特的需求,而普通的数码相机则大大逊色。
【评估多目标跟踪方法】9个高度敏捷目标在编队中的轨迹和测量研究(Matlab代码实现)内容概要:本文围绕“评估多目标跟踪方法”,重点研究9个高度敏捷目标在编队飞行中的轨迹生成与测量过程,并提供完整的Matlab代码实现。文中详细模拟了目标的动态行为、运动约束及编队结构,通过仿真获取目标的状态信息与观测数据,用于验证和比较不同多目标跟踪算法的性能。研究内容涵盖轨迹建模、噪声处理、传感器测量模拟以及数据可视化等关键技术环节,旨在为雷达、无人机编队、自动驾驶等领域的多目标跟踪系统提供可复现的测试基准。; 适合人群:具备一定Matlab编程基础,从事控制工程、自动化、航空航天、智能交通或人工智能等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多目标跟踪算法(如卡尔曼滤波、粒子滤波、GM-CPHD等)的性能评估与对比实验;②作为无人机编队、空中交通监控等应用场景下的轨迹仿真与传感器数据分析的教学与研究平台;③支持对高度机动目标在复杂编队下的可观测性与跟踪精度进行深入分析。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注轨迹生成逻辑与测量模型构建部分,可通过修改目标数量、运动参数或噪声水平来拓展实验场景,进一步提升对多目标跟踪系统设计与评估的理解。
本软件实现了一种基于时域有限差分法结合时间反转算法的微波成像技术,旨在应用于乳腺癌的早期筛查。其核心流程分为三个主要步骤:数据采集、信号处理与三维可视化。 首先,用户需分别执行“WithTumor.m”与“WithoutTumor.m”两个脚本。这两个程序将在模拟生成的三维生物组织环境中进行电磁仿真,分别采集包含肿瘤模型与不包含肿瘤模型的场景下的原始场数据。所获取的数据将自动存储为“withtumor.mat”与“withouttumor.mat”两个数据文件。 随后,运行主算法脚本“TR.m”。该程序将加载上述两组数据,并实施时间反转算法。算法的具体过程是:提取两组仿真信号之间的差异成分,通过一组专门设计的数字滤波器对差异信号进行增强与净化处理,随后在数值模拟的同一组织环境中进行时间反向的电磁波传播计算。 在算法迭代计算过程中,系统会按预设的周期(每n次迭代)自动生成并显示三维模拟空间内特定二维切面的电场强度分布图。通过对比观察这些动态更新的二维场分布图像,用户有望直观地识别出由肿瘤组织引起的异常电磁散射特征,从而实现病灶的视觉定位。 关于软件的具体配置要求、参数设置方法以及更深入的技术细节,请参阅软件包内附的说明文档。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值