Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Here is an example:
S = "rabbbit", T = "rabbit"
Return 3.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Here is an example:
S = "rabbbit", T = "rabbit"
Return 3.
public class Solution {
public int numDistinct(String s, String t) {
if (s == null)
return 0;
if (t == null || t.length() == 0)
return 1;
if (s.length() == 0)
return 0;
int lenS = s.length();
int lenT = t.length();
int[][] dp = new int[2][lenT + 1];
dp[0][0] = 1;
int lastLenS = 0;
int currLenS = 1;
for (int i = 1; i <= lenS; i++) {
currLenS = 1 - lastLenS;
dp[currLenS][0] = 1;
for (int j = 1; j <= lenT; j++) {
dp[currLenS][j] = dp[lastLenS][j];
if (s.charAt(i - 1) == t.charAt(j - 1))
dp[currLenS][j] += dp[lastLenS][j-1];
}
lastLenS = currLenS;
}
return dp[currLenS][lenT];
}
// dp[i][j] = dp[i - 1][j] + (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] : 0);
// dp[i][j]表示s的前i字符构成的子串能匹配t中前j个字符构成的子串的子序列数
// 不管s和t当前考察位置处的字符是否相等,dp[i][j]至少有dp[i-1][j]
// 如果当前考察位置处两字符相等,则再加上dp[i-1][j-1]的数目
public int numDistinct1(String s, String t) {
if (s == null)
return 0;
if (t == null || t.length() == 0)
return 1;
if (s.length() == 0)
return 0;
int lenS = s.length();
int lenT = t.length();
int[][] dp = new int[lenS + 1][lenT + 1];
dp[0][0] = 1;
for (int i = 1; i <= lenS; i++) {
dp[i][0] = 1;
for (int j = 1; j <= lenT; j++) {
dp[i][j] = dp[i - 1][j];
if (s.charAt(i - 1) == t.charAt(j - 1))
dp[i][j] += dp[i - 1][j - 1];
}
}
return dp[lenS][lenT];
}
}