Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution {
// dp[i] = min(dp[i], dp[i - 1]) + num[i]
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0 || triangle.get(0).size() == 0)
return 0;
int rows = triangle.size();
int cols = triangle.get(rows - 1).size();
int[] dp = new int[cols];
dp[0] = triangle.get(0).get(0);
for (int i = 1; i < rows; i++) {
int lastPos = triangle.get(i).size() - 1;
dp[lastPos] = dp[lastPos - 1] + triangle.get(i).get(lastPos);
for (int j = lastPos - 1; j > 0; j--) {
dp[j] = Math.min(dp[j], dp[j - 1]) + triangle.get(i).get(j);
}
dp[0] += triangle.get(i).get(0);
}
int min = Integer.MAX_VALUE;
for (int j = 0; j < cols; j++) {
if (min > dp[j])
min = dp[j];
}
return min;
}
// dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1]) + num[i][j]
/*
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0 || triangle.get(0).size() == 0)
return 0;
int rows = triangle.size();
int cols = triangle.get(rows - 1).size();
int[][] dp = new int[rows][cols];
dp[0][0] = triangle.get(0).get(0);
for (int i = 1; i < rows; i++) {
for (int j = 0; j < triangle.get(i).size(); j++) {
if (j > 0 && j < triangle.get(i).size() - 1) {
dp[i][j] = Math.min(dp[i - 1][j - 1], dp[i - 1][j]) + triangle.get(i).get(j);
} else if (j == 0) {
dp[i][j] = dp[i - 1][j] + triangle.get(i).get(j);
} else if (j == triangle.get(i).size() - 1) {
dp[i][j] = dp[i - 1][j - 1] + triangle.get(i).get(j);
}
}
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < cols; i++) {
if (dp[rows - 1][i] < min)
min = dp[rows - 1][i];
}
return min;
}
*/
}