A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1 'B' -> 2 ... 'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).
The number of ways decoding "12" is 2.
public class Solution {
// dp[i] = '0' < s.char(i) <= '9' ? d[i - 1] : 0
// + 9 < s.sub(i - 2, i) <= 26 ? d[i - 2] : 0
public int numDecodings(String s) {
if (s == null || s.length() == 0)
return 0;
int N = s.length();
int[] dp = new int[N + 1];
dp[0] = 1; // 注意这个初始化条件
dp[1] = (s.charAt(0) >= '1' && s.charAt(0) <= '9') ? 1 : 0;
for (int i = 2; i <= N; i++) {
char c = s.charAt(i - 1);
if (c >= '1' && c <= '9')
dp[i] = dp[i - 1];
int prev2 = Integer.valueOf(s.substring(i-2, i));
if (prev2 > 9 && prev2 < 27)
dp[i] += dp[i - 2];
}
return dp[N];
}
/*Time Limit Exceeded O(N^3)
public int numDecodings(String s) {
if (s == null || s.length() == 0)
return 0;
int N = s.length();
int[][] dp = new int[N + 1][N + 1];
// initialization dp[i][i+1]
for (int i = 0; i < N; i++) {
char c = s.charAt(i);
dp[i][i + 1] = (c >= '1' && c <= '9') ? 1 : 0;
}
for (int i = 0; i < N - 1; i++) {
String sub = s.substring(i, i + 2);
dp[i][i + 2] = (sub.compareTo("10") >= 0 && sub.compareTo("27") < 0) ? 1 : 0;
}
for (int k = 3; k <= N; k++) {
for (int i = 0; i <= N - k ; i++) {
for (int j = i + 1; j <= i + k - 1; j++) {
dp[i][i + k] += dp[i][j] * dp[j][i + k];
}
}
}
return dp[0][N];
}
*/
}
本文介绍了一种基于动态规划的方法来解决消息解码问题,即计算一个由数字组成的字符串有多少种不同的字母解码方式。提供了两种解决方案,一种是高效的动态规划算法,另一种是较慢的递归方法。
545

被折叠的 条评论
为什么被折叠?



