[题目]
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
[分析] n个节点的BST的结构数等于从1到n依次为root节点对应的BST个数,记录中间结果避免重复计算。
public class Solution {
// Method 2
//dp[i] : number of unique BSTs which store value [1,i]
public int numTrees(int n) {
if (n <= 0)
return 0;
int[] dp = new int[n + 1];
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) // select j as root
dp[i] += dp[j - 1] * dp[i - j];
}
return dp[n];
}
// Method 1
public int numTrees(int n) {
if (n <= 0)
return 0;
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
int mid = (i - 1) / 2;
for (int j = 0; j <= mid; j++)
dp[i] += 2 * dp[j] * dp[i - 1 - j];//编码过程中i-1-j写成n-1-j,调试了好一会
if (i % 2 == 1)
dp[i] -= dp[mid] * dp[mid];
}
return dp[n];
}
}

本文介绍了一种使用动态规划方法计算给定整数n时,所有可能的独特二叉搜索树的数量。通过两种不同的方法实现了该计算过程,并提供了详细的代码示例。
140

被折叠的 条评论
为什么被折叠?



