Database Normalization

本文介绍数据库规范化的基本概念,探讨消除冗余数据及确保数据依赖合理的两大目标,并解释了一范式(1NF)、二范式(2NF)和三范式(3NF)的具体要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 the purpose of this ways ,fist ,it aims to eliminate the redudant data and ensure the dependenties make sense
[b]The First Normal Form:[/b]
1) elinimate the duplicated date from the same table
2) identify each row with the unique column or the several columns ,to be specific,it is applied in a table with a Primary Key
[b]The second Normal Form[/b]
1) meet all the requirements of the first normal form
2)using the Foreign Key to elinimate duplicate data by means of separating them into the different tables ,its usually scene is in 1:M
[b]the Third Normal Form[/b]
1) meet all the requirements of the second normal form
2)remove columns that are not dependent upon the primary key ,its usually scene is in M:N

f you've been working with databases for a while, chances are you've heard the term normalization. Perhaps someone's asked you "Is that database normalized?" or "Is that in BCNF?" All too often, the reply is "Uh, yeah." Normalization is often brushed aside as a luxury that only academics have time for. However, knowing the principles of normalization and applying them to your daily database design tasks really isn't all that complicated and it could drastically improve the performance of your DBMS.

In this article, we'll introduce the concept of normalization and take a brief look at the most common normal forms. Future articles will provide in-depth explorations of the normalization process.

What is Normalization?
Normalization is the process of efficiently organizing data in a database. There are two goals of the normalization process: eliminating redundant data (for example, storing the same data in more than one table) and ensuring data dependencies make sense (only storing related data in a table). Both of these are worthy goals as they reduce the amount of space a database consumes and ensure that data is logically stored.
The Normal Forms
The database community has developed a series of guidelines for ensuring that databases are normalized. These are referred to as normal forms and are numbered from one (the lowest form of normalization, referred to as first normal form or 1NF) through five (fifth normal form or 5NF). In practical applications, you'll often see 1NF, 2NF, and 3NF along with the occasional 4NF. Fifth normal form is very rarely seen and won't be discussed in this article.

Before we begin our discussion of the normal forms, it's important to point out that they are guidelines and guidelines only. Occasionally, it becomes necessary to stray from them to meet practical business requirements. However, when variations take place, it's extremely important to evaluate any possible ramifications they could have on your system and account for possible inconsistencies. That said, let's explore the normal forms.
First Normal Form (1NF)
First normal form (1NF) sets the very basic rules for an organized database:

* Eliminate duplicative columns from the same table.
* Create separate tables for each group of related data and identify each row with a unique column or set of columns (the primary key).

Second Normal Form (2NF)
Second normal form (2NF) further addresses the concept of removing duplicative data:

* Meet all the requirements of the first normal form.
* Remove subsets of data that apply to multiple rows of a table and place them in separate tables.
* Create relationships between these new tables and their predecessors through the use of foreign keys.

Third Normal Form (3NF)
Third normal form (3NF) goes one large step further:

* Meet all the requirements of the second normal form.
* Remove columns that are not dependent upon the primary key.

Fourth Normal Form (4NF)
Finally, fourth normal form (4NF) has one additional requirement:

* Meet all the requirements of the third normal form.
* A relation is in 4NF if it has no multi-valued dependencies.

Remember, these normalization guidelines are cumulative. For a database to be in 2NF, it must first fulfill all the criteria of a 1NF database.

If you'd like to ensure your database is normalized, explore our other articles in this series:
内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值