POJ 2429 数论

GCD & LCM Inverse
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 5559 Accepted: 993

Description

Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse? That is: given GCD and LCM, finding a and b.

Input

The input contains multiple test cases, each of which contains two positive integers, the GCD and the LCM. You can assume that these two numbers are both less than 2^63.

Output

For each test case, output a and b in ascending order. If there are multiple solutions, output the pair with smallest a + b.

Sample Input

3 60

Sample Output

12 15

Source

大数质因数分解
然后DFS搜索出每一个因子
#include<stdio.h> #include<math.h> #include<string.h> #include<stdlib.h> #include<iostream> #include<time.h> using namespace std; typedef unsigned __int64 ll; const ll MAX=100; const ll inf=(ll)1<<62; ll f0[100],ff,n,tmp,ret,ret1; ll myrandom() { ll a; a=rand(); a*=rand(); a*=rand(); a*=rand(); return a; } ll mulmod(ll a,ll b,ll c) { ll ret=0; while(b) { if(b&1) { ret+=a; if(ret>c) ret=ret-c; } a=a<<1; if(a>c) a=a-c; b=b>>1; } return ret; } ll powmod(ll a,ll b,ll c) { ll ret=1; while(b) { if(b&1) ret=mulmod(ret,a,c); a=mulmod(a,a,c); b=b>>1; } return ret; } int miller(ll base,ll n) { ll m=n-1,k=0; int i; while(m%2==0) { m=m>>1; k++; } if(powmod(base,m,n)==1) return 1; for(i=0;i<k;i++) { if(powmod(base,m<<i,n)==n-1) return 1; } return 0; } int miller_rabin(ll n) { int i; for( i=2;i<100;++i) if(n%i==0) if(n==i) return 1; else return 0; for(i=0;i<MAX;++i) { ll base=myrandom()%(n-1)+1; if(!miller(base,n)) return 0; } return 1; } ll gcd(ll a,ll b) { if(b==0) return a; else return gcd(b,a%b); } ll f(ll a,ll b) { return (mulmod(a,a,b)+1)%b; } ll pollard_rho(ll n) { int i; if(n<=2) return 0; for( i=2;i<100;++i) if(n%i==0) return i; ll p,x,xx; for( i=1;i<MAX;i ++) { x=myrandom()%n; xx=f(x,n); p=gcd((xx+n-x)%n,n); while(p==1) { x=f(x,n); xx=f(f(xx,n),n); p=gcd((xx+n-x)%n,n)%n; } if(p) return p; } return 0; } ll prime(ll a) { if(miller_rabin(a)) return 0; ll t=pollard_rho(a); ll p=prime(t); if(p) return p; return t; } ll ans,ansa,ansb; ll min(ll a,ll b) { if(a>b) return b; else return a; } void dfs(ll n,ll now,ll id) { if(now*now>n)//剪哈枝 return; if(id==ff) { ll a,b; a=now; b=n/now; if(a+b<ans) { ans=a+b; ansa=a; ansb=b; } return; } dfs(n,now*f0[id],id+1); dfs(n,now,id+1); } void swap(ll &a,ll &b) { ll temp; temp=a; a=b; b=temp; } int main() { ll a,b,key,tmp; srand(time(NULL)); while(scanf("%I64u%I64u",&a,&b)!=EOF) { if(a>b) swap(a,b); if(a==b||miller_rabin(b)) { printf("%I64u %I64u\n",a,b); continue; } key=b/a; ff=0,n=key; while(key>1) { if(miller_rabin(key)) break; tmp=prime(key); f0[ff]=tmp; key=key/tmp; while(key%tmp==0) { key=key/tmp; f0[ff]=f0[ff]*tmp; } ff++; } if(key>1) { f0[ff++]=key; } ans=inf; dfs(n,1,0); printf("%I64u %I64u\n",ansa*a,ansb*a); } return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值