| Time Limit: 2000MS | Memory Limit: 65536K | |||
| Total Submissions: 3985 | Accepted: 1394 | Special Judge | ||
Description
John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.
Note that John can not be present at two weddings simultaneously.
Input
The first line contains a integer N ( 1 ≤ N ≤ 1000).
The next N lines contain the Si, Ti and Di. Si and Ti are in the format of hh:mm.
Output
The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.
Sample Input
2 08:00 09:00 30 08:15 09:00 20
Sample Output
YES 08:00 08:30 08:40 09:00
Source
Source Code
| Problem: 3683 | User: athenaa | |
| Memory: 11768K | Time: 391MS | |
| Language: C++ | Result: Accepted |
- Source Code
#include<stdio.h> #include<algorithm> #include<vector> #include<queue> #include<stack> using namespace std; struct node { int s; int e; int invial; }; node time[1005]; int belong[2005],low[2005],dfn[2005],in[2005],cet[2005],col[2005]; bool used[2005],instack[2005]; int index,cnt,n; vector<int>map[2005]; bool net[2005][2005]; stack<int>s; void init() { int i; for(i=0;i<2005;i++) { map[i].clear(); // net[i].clear(); } memset(net,0,sizeof(net)); memset(in,0,sizeof(in)); memset(col,0,sizeof(col)); memset(belong,0,sizeof(belong)); memset(used,0,sizeof(used)); memset(instack,0,sizeof(instack)); memset(low,0,sizeof(low)); memset(dfn,-1,sizeof(dfn)); memset(net,0,sizeof(net)); index=0; cnt=0; } bool judge(int s1,int e1,int s2,int e2) { if(s2<e1&&s1<e2) return true; return false; } int min(int a,int b) { if(a>b) return b; else return a; } void tarjan(int u) { int i,v; index++; dfn[u]=index; low[u]=index; instack[u]=true; used[u]=true; s.push(u); for(i=0;i<map[u].size();i++) { v=map[u][i]; if(!used[v]) { tarjan(v); low[u]=min(low[u],low[v]); } else if(instack[v]) { low[u]=min(low[u],dfn[v]); } } if(dfn[u]==low[u]) { cnt++; do { v=s.top(); s.pop(); belong[v]=cnt; instack[v]=false; } while(u!=v); } } void topsort() { int i,u,v; queue<int>q; for(i=1;i<=cnt;i++) if(in[i]==0) q.push(i); while(!q.empty()) { u=q.front(); q.pop(); if(!col[u]) { col[u]=1; col[cet[u]]=-1; } for(v=1;v<=cnt;v++) { if(net[u][v]) { net[u][v]=false; in[v]--; if(in[v]==0) q.push(v); } } } } int main() { int i,a,b,c,d,l,j; init(); scanf("%d",&n); for(i=0;i<n;i++) { scanf("%d:%d %d:%d %d",&a,&b,&c,&d,&l); time[i].s=a*60+b; time[i].e=c*60+d; time[i].invial=l; } for(i=0;i<n;i++) for(j=0;j<n;j++) { if(i==j) continue; if(judge(time[i].s,time[i].s+time[i].invial,time[j].s,time[j].s+time[j].invial)) { map[i].push_back(j+n); // printf("%d %d/n",i,j+n); } if(judge(time[i].s,time[i].s+time[i].invial,time[j].e-time[j].invial,time[j].e)) { map[i].push_back(j); // printf("%d %d/n",i,j); } if(judge(time[i].e-time[i].invial,time[i].e,time[j].s,time[j].s+time[j].invial)) { map[i+n].push_back(j+n); // printf("%d %d/n",i+n,j+n); } if(judge(time[i].e-time[i].invial,time[i].e,time[j].e-time[j].invial,time[j].e)) { map[i+n].push_back(j); // printf("%d %d/n",i+n,j); } } for(i=0;i<2*n;i++) { if(dfn[i]==-1) tarjan(i); } for(i=0;i<n;i++) { if(belong[i]==belong[i+n]) { printf("NO/n"); return 0; } cet[belong[i]]=belong[i+n]; cet[belong[i+n]]=belong[i]; } printf("YES/n"); for(i=0;i<2*n;i++) for(j=0;j<map[i].size();j++) if(belong[i]!=belong[map[i][j]]) net[belong[map[i][j]]][belong[i]]=true; for(i=1;i<=cnt;i++) for(j=1;j<=cnt;j++) { if(net[i][j]) in[j]++; } topsort(); for(i=0;i<n;i++) { if(col[belong[i]]==1) { printf("%02d:%02d %02d:%02d/n",time[i].s/60,time[i].s%60,(time[i].s+time[i].invial)/60,(time[i].s+time[i].invial)%60); } else { printf("%02d:%02d %02d:%02d/n",(time[i].e-time[i].invial)/60,(time[i].e-time[i].invial)%60,time[i].e/60,time[i].e%60); } } return 0; }
本文介绍了一道关于日程安排的问题,神父要在不同婚礼间进行特殊仪式,且每场仪式必须在婚礼开始或结束时举行。文章通过2-SAT算法解决这一问题,确保神父能够准时出席所有仪式。
943

被折叠的 条评论
为什么被折叠?



