POJ 2955 DP动态规划

本文介绍了一种算法,用于解决寻找给定括号序列中最长的有效括号子序列的问题。通过动态规划方法,该算法能高效地找出括号序列中最长的有效配对,并返回其长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 1659 Accepted: 831

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im n, ai1ai2aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

#include<stdio.h> #include<string.h> int dp[105][105]; char str[105]; bool match(char a,char b) { if(a=='('&&b==')') return true; if(a=='['&&b==']') return true; return false; } int main() { int i,j,k,l,t; while(scanf("%s",str)!=EOF) { if(strcmp(str,"end")==0) break; memset(dp,0,sizeof(dp)); l=strlen(str); for(k=2;k<=l;k++) { for(i=0;i+k-1<l;i++) { t=i+k-1; for(j=i;j<t;j++) { if(dp[i][t]<dp[i][j]+dp[j+1][t]) dp[i][t]=dp[i][j]+dp[j+1][t]; if(match(str[i],str[t])) { if(dp[i][t]<dp[i+1][t-1]+2) dp[i][t]=dp[i+1][t-1]+2; } } } } printf("%d/n",dp[0][l-1]); } return 0; }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值