Using NVidia PerfHUD from within Visual Studio

本文指导您如何将NVIDIA PerfHUD工具集成到Visual Studio中,包括配置外部工具、添加到调试工具栏、设置快捷键及个性化工具栏按钮。

Go to Tools>External Tools and choose Add then give it a good title "NVidia perfHUD". In the Command box, point it to the NVidia perfHUD exe (not your exe). You will want to pass your exe as an argument, so in the Arguments box enter $(TargetPath) (no quotes). You will also probably need to set the Initial Directory to $(TargetDir) or $(ProjectDir). Then, use the "Move Up" button to move the new tool to the top of the list. Click Ok.

Now, add it to the Debug toolbar (where it logically belongs). To do that, go to Tools>Customize... then from the Categories list (the list to the left) select Tools, then from the list to the right look for "External Command 1" (it's 1 because we moved NVidia PerfHUD to the top of the list earlier), then drag it and drop it on one of the visible toolbars (the Debug toolbar is the most reasonable choice).

At this point, you can click on the newly added toolbar item to launch NVidia perfHUD with your exe. But you will probably want to add a keyboard shortcut to it. To do that, go to Tools>Options, and from the left select Environment>Keyboard. Now, in the text box titled "Show commands containing:", enter ExternalCommand1. This will narrow down the list to one item (which is the one we need). Then give it an intuitive shortcut (I use Ctrl+Alt+N and select Global from the "Use new shortcut in:" combo).

Then, to make it look nice, customize the toolbar button and give it an image instead of having its title displayed. I recommend you grab the icon from the NVidia PerfHUD exe, convert it to a bitmap and use that.

原文:

http://my.opera.com/adelamro/blog/2008/06/30/using-nvidia-perfhud-from-within-visual-studio

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值