css footer适应长短页面

本文详细介绍了使用HTML和CSS进行网页布局的方法,包括如何设置高度、背景颜色等样式,以及通过特定的结构实现内容与页脚的自动调整。此外,还展示了如何使用内外边距来组织页面元素。

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>test</title> <mce:style type="text/css"><!-- *{margin:0;padding:0;} html{height:100%; background:#0099FF;} body{height:100%; background:#99FFCC;} #wrap{height:100%; background:#CCFF33;} body > #wrap{height:auto;min-height:100%;} #containt{width:800px;margin:0 auto 100px;} #footerWrap{height:100px;margin-top:-100px; background:#FFFF99;} #footer{width:800px; margin:0 auto;} --></mce:style><style type="text/css" mce_bogus="1">*{margin:0;padding:0;} html{height:100%; background:#0099FF;} body{height:100%; background:#99FFCC;} #wrap{height:100%; background:#CCFF33;} body > #wrap{height:auto;min-height:100%;} #containt{width:800px;margin:0 auto 100px;} #footerWrap{height:100px;margin-top:-100px; background:#FFFF99;} #footer{width:800px; margin:0 auto;}</style> </head> <body> <div id="wrap"> <div id="containt"> <p>fsdfsfds</p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> <p>asdasd</p> </div> </div> <div id="footerWrap"> <div id="footer"> dasdasd</div></div> </body> </html>

MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值