PKUOJ1042 Gone Fishing

Gone Fishing
Time Limit:2000MS Memory Limit:32768K
Total Submissions:19098 Accepted:5374

Description

John is going on a fishing trip. He has h hours available (1 <= h <= 16), and there are n lakes in the area (2 <= n <= 25) all reachable along a single, one-way road. John starts at lake 1, but he can finish at any lake he wants. He can only travel from one lake to the next one, but he does not have to stop at any lake unless he wishes to. For each i = 1,...,n - 1, the number of 5-minute intervals it takes to travel from lake i to lake i + 1 is denoted ti (0 < ti <=192). For example, t3 = 4 means that it takes 20 minutes to travel from lake 3 to lake 4. To help plan his fishing trip, John has gathered some information about the lakes. For each lake i, the number of fish expected to be caught in the initial 5 minutes, denoted fi( fi >= 0 ), is known. Each 5 minutes of fishing decreases the number of fish expected to be caught in the next 5-minute interval by a constant rate of di (di >= 0). If the number of fish expected to be caught in an interval is less than or equal to di , there will be no more fish left in the lake in the next interval. To simplify the planning, John assumes that no one else will be fishing at the lakes to affect the number of fish he expects to catch.
Write a program to help John plan his fishing trip to maximize the number of fish expected to be caught. The number of minutes spent at each lake must be a multiple of 5.

Input

You will be given a number of cases in the input. Each case starts with a line containing n. This is followed by a line containing h. Next, there is a line of n integers specifying fi (1 <= i <=n), then a line of n integers di (1 <=i <=n), and finally, a line of n - 1 integers ti (1 <=i <=n - 1). Input is terminated by a case in which n = 0.

Output

For each test case, print the number of minutes spent at each lake, separated by commas, for the plan achieving the maximum number of fish expected to be caught (you should print the entire plan on one line even if it exceeds 80 characters). This is followed by a line containing the number of fish expected.
If multiple plans exist, choose the one that spends as long as possible at lake 1, even if no fish are expected to be caught in some intervals. If there is still a tie, choose the one that spends as long as possible at lake 2, and so on. Insert a blank line between cases.

Sample Input

2 
1 
10 1 
2 5 
2 
4 
4 
10 15 20 17 
0 3 4 3 
1 2 3 
4 
4 
10 15 50 30 
0 3 4 3 
1 2 3 
0 

Sample Output

45, 5 
Number of fish expected: 31 

240, 0, 0, 0 
Number of fish expected: 480 

115, 10, 50, 35 
Number of fish expected: 724 
【题解】都是从最后一个湖结束,所以总路程相同,可以忽略不计。剩下的只要每次取可以捕的最多的鱼的湖,用优先队列来实现贪心!
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
struct la {
    int restf, lanum;
};
int f[28], d[28], t[28], lt[28], bestl[28];
bool operator < (const la &t1, const la &t2)
{
    if(t1.restf==t2.restf) return t1.lanum>t2.lanum;
    return t1.restf<t2.restf;
}
int main()
{
    int n, h, i, j, endt, nowt, totlef, bestf;
    while(cin>>n && n) {
        cin>>h;
        h*=12;
        for(i=0; i<n; i++) cin>>f[i];
        for(i=0; i<n; i++) cin>>d[i];
        for(i=1; i<n; i++) cin>>t[i];
        t[0]=endt=0;
        bestf=-1;
        for(i=0; i<n; i++) {
            endt+=t[i];
            if(endt>h) break;
            nowt=h-endt;
            priority_queue<la>q;
            la x;
            for(j=0; j<=i; j++) {
                x.restf=f[j]; x.lanum=j;
                q.push(x);
            }
            memset(lt, 0, sizeof(lt));
            totlef=0;
            while(nowt--) {
                x=q.top(); q.pop();
                lt[x.lanum]++;
                totlef+=x.restf;
                x.restf-=d[x.lanum];
                if(x.restf<0) x.restf=0;
                q.push(x);
            }
            if(totlef>bestf) {
                bestf=totlef;
                for(j=0; j<=i; j++) bestl[j]=lt[j];
                for(; j<n; j++) bestl[j]=0;
            }
        }
        cout<<bestl[0]*5;
        for(i=1; i<n; i++) cout<<", "<<bestl[i]*5;
        cout<<endl;
        cout<<"Number of fish expected: "<<bestf<<endl<<endl;
    }
    return 0;
}
【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值