Kafka

慢慢道来……

原来,对于Linkin这样的互联网企业来说,用户和网站上产生的数据有三种

  1. 需要实时响应的交易数据,用户提交一个表单,输入一段内容,这种数据最后是存放在关系数据库(Oracle, MySQL)中的,有些需要事务支持。
  2. 活动流数据,准实时的,例如页面访问量、用户行为、搜索情况,这些数据可以产生啥?广播、排序、个性化推荐、运营监控等。这种数据一般是前端服务器先写文件,然后通过批量的方式把文件倒到Hadoop这种大数据分析器里面慢慢整。
  3. 各个层面程序产生的日志,例如httpd的日志、tomcat的日志、其他各种程序产生的日志。码农专用,这种数据一个是用来监控报警,还有就是用来做分析。

Linkin的牛逼之处,就在于他们发现了原先2,3的数据处理方式有问题,对于2而言,原来动辄一两个钟头批处理一次的方式已经不行了,用户在一次购买完之后最好马上就能看到相关的推荐。而对于3而言,传统的syslog模式等也不好用,而且很多情况下2和3用的是同一批数据,只是数据消费者不一样。

这2种数据的特点是:

  1. 准实时,不需要秒级响应,分钟级别即可。
  2. 数据量巨大,是交易数据的10倍以上。
  3. 数据消费者众多,例如评级、投票、排序、个性化推荐、安全、运营监控、程序监控、后期报表等

于是,Linkin就自己开发了一套系统,专门用来处理这种性质的数据,这就是Kafka

那么,在整个实践过程中Linkin做了什么样的设计,解决了什么问题?

首先看下数据流动图:

数据结构图

多数据中心怎么管理数据:

跨数据中心图

集群本身的架构图

Kafka内部架构图

Kafka内部架构图,分为数据产生者(Producer),数据中间者(Broker),数据消费者(Consumer)

显然,这是一个集群的发布/订阅系统,有如下几个特点

  1. 生产者是推数据(Push),消费者是拉数据(Pull)。存在数据复用,在Linkin平均生产1条消息会被消费5.5次。
  2. 数据生产者和数据消费者的速度不对等,所以要把数据沉淀在Kafka内慢慢处理,Linkin一般在集群内放7天的数据。
  3. 性能上追求高吞吐,保证一定的延时性之内。这方面做了大量优化,包括没有全局hash,批量发送,跨数据中心压缩等等。
  4. 容错性上使用的“至少传输一次”的语义。不保证强一次,但避免最多传一次的情况。
  5. 集群中数据分区,保证单个数据消费者可以读到某话题(topic)的某子话题(例如某用户的数据)的所有数据,避免全局读数据
  6. 数据规范性,所有数据分为数百个话题,然后在数据的源头——生产者(Producer)这边就用Schema来规范数据,这种理念使得后期的数据传输、序列化、压缩、消费都有了统一的规范,同时也解决了这个领域非常麻烦的数据版本不兼容问题——生产者一改代码,消费者就抓瞎。
  7. 用于监控,这个系统的威力在于,前面所有生产系统的数据流向,通过这个系统都能关联起来,用于日常的运营也好,用于数据审计,用于运维级别的监控也好都是神器啊!

所以,Kafka的设计基本上目前这个领域的唯一选择。我也看了很多其他实现,包括:

scribe(Facebook)          | 2   | C++      | 已停止更新,不建议使用
flume(Apache, Cloudera)   |1    | Java     | 配置较重
chukwa(Hadoop)            |12   | Java     | 2012发布最后一版,不建议使用
fluentd                   |1    | Ruby     | 比较活跃,看起来不错
logstash                  |12345| JRuby    | 功能全,据说有不少小bug
splunk                    |12345| C/Python | 商业闭源,功能强大,可做参考
timetunnel(Alibaba)       | 2   | Java     | 基于thrift,10年左右成熟
kafka(Linkin)             | 2 4 | Scala    | 性能强劲,设计巧妙,可以作为基础设施
Samza(Linkin)             |12345|          | =Kafka+YARN+Hadoop
rabbitmq/activemq/qpid    | 2   | Java     | 传统消息中间件
Storm(twitter)            |  3  | Clojure  | 实时计算系统
Jstorm(Alibaba)           |  3  | Java     | storm的Java版,据说更稳定
S4(Yahoo)                 |  3  | Java     | 2013年已停止维护
Streambase(IBM)           |  3  | Java     | 商业产品,作为参考
HStreaming                |  3  | Java     | 商业产品,作为参考
spark                     |  3  | Scala    | 基于Hadoop
mongodb                   |   4 | C++      | 比较浪费硬盘
mysql                     |   4 | C++      | 无需多说
hdfs/hbase                |   4 | Java     | 无需多说
  1. 数据采集组件
  2. 数据传输组件
  3. 数据实时计算/索引/搜索组件
  4. 数据存储/持久化组件
  5. 数据展示/查询/报警界面组件

从数据传输这块的设计理念来说,Kafka是最为先进的,

### Kafka入门教程及使用场景 #### 一、Kafka简介 Apache Kafka 是一种分布式流处理平台,能够实现高吞吐量的消息传递系统。它最初由 LinkedIn 开发并开源,现已成为 Apache 软件基金会的一部分[^1]。 #### 二、Kafka的安装与配置 以下是基于 Docker 的 Kafka 安装方法: ```yaml version: "1" services: kafka: image: 'bitnami/kafka:latest' hostname: kafka ports: - 9092:9092 - 9093:9093 volumes: - 'D:\Docker\Kafka\data:/bitnami/kafka' networks: - kafka_net environment: # KRaft settings - KAFKA_CFG_NODE_ID=0 - KAFKA_CFG_PROCESS_ROLES=controller,broker - KAFKA_CFG_CONTROLLER_QUORUM_VOTERS=0@kafka:9093 # Listeners - KAFKA_CFG_LISTENERS=PLAINTEXT://:9092,CONTROLLER://:9093 - KAFKA_CFG_ADVERTISED_LISTENERS=PLAINTEXT://192.168.2.51:9092 - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP=CONTROLLER:PLAINTEXT,PLAINTEXT:PLAINTEXT - KAFKA_CFG_CONTROLLER_LISTENER_NAMES=CONTROLLER - KAFKA_CFG_INTER_BROKER_LISTENER_NAME=PLAINTEXT networks: kafka_net: driver: bridge ``` 运行命令如下: ```bash docker-compose -f .\docker-compose.yml up -d ``` 上述 YAML 文件定义了一个简单的 Kafka 集群环境,并通过 `docker-compose` 启动服务[^1]。 #### 三、Kafka的基础概念 在 Kafka 中,消息被存储在主题(Topic)中,而每个 Topic 又分为若干分区(Partition)。每个分区有一个 Leader 和零个或多个 Follower。Leader 负责读写操作,Follower 则同步数据以提供冗余支持。当创建一个新的 Topic 时,Kafka 自动将 Partition 的 Leader 均匀分布到各个 Broker 上,从而提高系统的可靠性和性能[^2]。 #### 四、可视化管理工具 Offset Explorer 是一款常用的 Kafka 数据管理和监控工具,可以帮助开发者更直观地查看和分析 Kafka 主题中的偏移量和其他元数据信息[^1]。 #### 五、Kafka的主要使用场景 1. **日志收集**:Kafka 可用于集中式日志采集方案,实时捕获来自不同服务器的日志文件。 2. **消息队列**:作为传统 MQ 替代品,Kafka 提供高性能异步通信机制。 3. **活动跟踪**:记录用户的在线行为轨迹,便于后续数据分析挖掘价值。 4. **指标监测**:构建企业级运营状态仪表盘,展示关键业务指标变化趋势。 5. **ETL流程优化**:连接多种数据库之间复杂的数据转换过程,提升效率减少延迟。 #### 六、总结 通过对 Kafka 的基本原理理解及其实际应用场景探讨,可以更好地掌握如何利用这一强大技术解决现实世界中的挑战性问题。 问题
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值