SoTextureCoordinatePlane使用

本文介绍Inventor中两种纹理坐标函数的应用实例:SoTextureCoordinatePlane和SoTextureCoordinateEnvironment。重点展示如何使用SoTextureCoordinatePlane节点为球体生成不同重复频率的纹理坐标。

Inventor包含两种纹理坐标函数:
SoTextureCoordiantePlane: 通过一个平面投影纹理贴图
SoTextureCoordinateEnvironment: 指定物体表面看上去他们所处环境的反射图像(也称反射映射或环境映射)

Inventor可以使用SoTextureCoordianteDefault节点使用缺省的纹理坐标,即使用SoTextureCoordinateDefault可以“关闭”掉场景中前面定义的任何纹理坐标点所产生的结果,并不一定非要使用separator节点才能达到隔离的效果。
下面是一个SoTextureCoordinatePlane的例子。

/* * Copyright 1991-1995, Silicon Graphics, Inc. * ALL RIGHTS RESERVED * * UNPUBLISHED -- Rights reserved under the copyright laws of the United * States. Use of a copyright notice is precautionary only and does not * imply publication or disclosure. * * U.S. GOVERNMENT RESTRICTED RIGHTS LEGEND: * Use, duplication or disclosure by the Government is subject to restrictions * as set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights * in Technical Data and Computer Software clause at DFARS 252.227-7013 and/or * in similar or successor clauses in the FAR, or the DOD or NASA FAR * Supplement. Contractor/manufacturer is Silicon Graphics, Inc., * 2011 N. Shoreline Blvd. Mountain View, CA 94039-7311. * * THE CONTENT OF THIS WORK CONTAINS CONFIDENTIAL AND PROPRIETARY * INFORMATION OF SILICON GRAPHICS, INC. ANY DUPLICATION, MODIFICATION, * DISTRIBUTION, OR DISCLOSURE IN ANY FORM, IN WHOLE, OR IN PART, IS STRICTLY * PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SILICON * GRAPHICS, INC. */ /*-------------------------------------------------------------- * This is an example from the Inventor Mentor, * chapter 7, example 3. * * This example illustrates using texture functions to * generate texture coordinates on a sphere. * It draws three texture mapped spheres, each with a * different repeat frequency as defined by the fields of the * SoTextureCoordinatePlane node. *------------------------------------------------------------*/ #include "CoinDef.h" #include <Inventor/nodes/SoMaterial.h> #include <Inventor/nodes/SoSeparator.h> #include <Inventor/nodes/SoSphere.h> #include <Inventor/nodes/SoTexture2.h> #include <Inventor/nodes/SoTexture2Transform.h> #include <Inventor/nodes/SoTextureCoordinatePlane.h> #include <Inventor/nodes/SoTranslation.h> #include <Inventor/Win/SoWin.h> #include <Inventor/Win/viewers/SoWinExaminerViewer.h> #ifdef WIN32 #endif int main(int, char **argv) { HWND myWindow = SoWin::init(argv[0]); if(myWindow == NULL) exit(1); SoSeparator *root = new SoSeparator; root->ref(); // Choose a texture. SoTexture2 *faceTexture = new SoTexture2; root->addChild(faceTexture); faceTexture->filename.setValue("../data/sillyFace.rgb"); // Make the diffuse color pure white SoMaterial *myMaterial = new SoMaterial; myMaterial->diffuseColor.setValue(1,1,1); root->addChild(myMaterial); // This texture2Transform centers the texture about (0,0,0) SoTexture2Transform *myTexXf = new SoTexture2Transform; myTexXf->translation.setValue(.5,.5); root->addChild(myTexXf); // Define a texture coordinate plane node. This one will // repeat with a frequency of two times per unit length. // Add a sphere for it to affect. SoTextureCoordinatePlane *texPlane1 = new SoTextureCoordinatePlane; texPlane1->directionS.setValue(SbVec3f(2,0,0)); texPlane1->directionT.setValue(SbVec3f(0,2,0)); root->addChild(texPlane1); root->addChild(new SoSphere); // A translation node for spacing the three spheres. SoTranslation *myTranslation = new SoTranslation; myTranslation->translation.setValue(2.5,0,0); // Create a second sphere with a repeat frequency of 1. SoTextureCoordinatePlane *texPlane2 = new SoTextureCoordinatePlane; texPlane2->directionS.setValue(SbVec3f(1,0,0)); texPlane2->directionT.setValue(SbVec3f(0,1,0)); root->addChild(myTranslation); root->addChild(texPlane2); root->addChild(new SoSphere); // The third sphere has a repeat frequency of .5 SoTextureCoordinatePlane *texPlane3 = new SoTextureCoordinatePlane; texPlane3->directionS.setValue(SbVec3f(.5,0,0)); texPlane3->directionT.setValue(SbVec3f(0,.5,0)); root->addChild(myTranslation); root->addChild(texPlane3); root->addChild(new SoSphere); SoWinExaminerViewer *myViewer = new SoWinExaminerViewer(myWindow); myViewer->setSceneGraph(root); myViewer->setTitle("Texture Coordinate Plane"); // In Inventor 2.1, if the machine does not have hardware texture // mapping, we must override the default drawStyle to display textures. myViewer->setDrawStyle(SoWinViewer::STILL, SoWinViewer::VIEW_AS_IS); myViewer->show(); SoWin::show(myWindow); SoWin::mainLoop(); return 0; }

内容概要:本文围绕新一代传感器产品在汽车电子电气架构中的关键作用展开分析,重点探讨了智能汽车向高阶智能化演进背景下,传统传感器无法满足感知需求的问题。文章系统阐述了自动驾驶、智能座舱、电动化与网联化三大趋势对传感器技术提出的更高要求,并深入剖析了激光雷达、4D毫米波雷达和3D-ToF摄像头三类核心新型传感器的技术原理、性能优势与现存短板。激光雷达凭借高精度三维点云成为高阶智驾的“眼睛”,4D毫米波雷达通过增加高度维度提升环境感知能力,3D-ToF摄像头则在智能座舱中实现人体姿态识别与交互功能。文章还指出传感器正从单一数据采集向智能决策升级,强调车规级可靠性、多模态融合与成本控制是未来发展方向。; 适合人群:从事汽车电子、智能驾驶、传感器研发等相关领域的工程师和技术管理人员,具备一定专业背景的研发人员;; 使用场景及目标:①理解新一代传感器在智能汽车系统中的定位与技术差异;②掌握激光雷达、4D毫米波雷达、3D-ToF摄像头的核心参数、应用场景及选型依据;③为智能驾驶感知层设计、多传感器融合方案提供理论支持与技术参考; 阅读建议:建议结合实际项目需求对比各类传感器性能指标,关注其在复杂工况下的鲁棒性表现,并重视传感器与整车系统的集成适配问题,同时跟踪芯片化、固态化等技术演进趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值