The 9.2.0.6 patch set is out

此博客为Pete Finnigan的Oracle安全相关内容,聚焦于Oracle数据库的安全方面。
Oracle 近日发布新的数据库补丁,修补了不少安全漏洞

copy from :

Pete Finnigan's Oracle security weblog

<!-- pete changes -->
<!-- end pete -->
11/02/2004: "The 9.2.0.6 patch set is out"

I just noticed today that the 9.2.0.6 path set is out for Win32 but doesn't seem to be out for other platforms yet. There is a note on metalink that describes the known issues fixed in 9.2.0.6 - Note 189908.1 lists the 9.2.0.x patch sets and also links to two further notes. The first of which is 283899.1 which is for known issues and alerts affecting 9.2.0.6. The second is 283897.1 which is the list of fixes in 9.2.0.6.

The only security specific mention in the first document is about a HTTP server patch for 9.2.0.5/6 which is part of alert #68.

The second document lists hundreds of bug fixes but specifically lists alert 68 in the general section (no details). It is also listed again in the security and denial of service section, in advanced / secure network section there is a bug mentioned (3889519) that say’s there are errors with data transfer with SSL when security patch 68 is installed. There is also a bug about importing a wrapped password verification function. There are nine bugs fixed in Oracle label security. There are 6 specific errors fixed in the row level security functionality.

It is important to apply new patch sets as they quite often fix "silent" security bugs. These are security bugs that are not part of a security alert. This could be because these security issues are not reported as such by the finder of the problem.

import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.patches import FancyArrowPatch import numpy as np # 设置画布大小与分辨率(适当放大画布避免拥挤) plt.figure(figsize=(22, 14), dpi=120) ax = plt.gca() ax.set_xlim(0, 11) ax.set_ylim(0, 9) ax.axis(&#39;off&#39;) # 隐藏坐标轴 # -------------------------- 1. 绘制标题(增大字号,提升辨识度) -------------------------- title = ax.text(5.5, 8.5, &#39;美团外卖大数据杀熟核心技术路线图&#39;, fontsize=18, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, bbox=dict(boxstyle="round,pad=0.3", facecolor=&#39;#F0F8FF&#39;, edgecolor=&#39;#4169E1&#39;)) # 标题加背景框 # -------------------------- 2. 第一阶段:多渠道数据采集(调整文本间距,避免重叠) -------------------------- # 阶段框(子图区域,适当扩大高度) stage1 = patches.Rectangle((0.3, 5.8), 3.2, 2.2, linewidth=2, edgecolor=&#39;#2E86AB&#39;, facecolor=&#39;#E6F3FF&#39;, alpha=0.8) # alpha提升背景透明度,避免遮挡文字 ax.add_patch(stage1) ax.text(2, 7.6, &#39;阶段一:多渠道数据采集&#39;, fontsize=13, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#2E86AB&#39;) # 技术1:APP埋点(调整y坐标,增加行间距) ax.text(0.8, 7.2, &#39;1. APP埋点技术&#39;, fontsize=11, fontweight=&#39;bold&#39;, color=&#39;#1A5F7A&#39;) ax.text(0.8, 7.0, &#39;• 部署节点:页面加载、按钮点击、订单提交&#39;, fontsize=9, color=&#39;#333&#39;) ax.text(0.8, 6.8, &#39;• 采集数据:浏览时长、下单频率、取消订单次数&#39;, fontsize=9, color=&#39;#333&#39;) # 技术2:Cookie+设备指纹(下移y坐标,与APP埋点错开) ax.text(0.8, 6.4, &#39;2. Cookie+设备指纹技术&#39;, fontsize=11, fontweight=&#39;bold&#39;, color=&#39;#1A5F7A&#39;) ax.text(0.8, 6.2, &#39;• Cookie:记录历史订单、收货地址变化&#39;, fontsize=9, color=&#39;#333&#39;) ax.text(0.8, 6.0, &#39;• 设备指纹:关联多设备(防账号切换)&#39;, fontsize=9, color=&#39;#333&#39;) # 技术3:间接数据获取(右移x坐标,避免与左侧技术重叠) ax.text(2.5, 7.2, &#39;3. 间接数据获取&#39;, fontsize=11, fontweight=&#39;bold&#39;, color=&#39;#1A5F7A&#39;) ax.text(2.5, 7.0, &#39;• 支付习惯:信用卡使用、支付频次&#39;, fontsize=9, color=&#39;#333&#39;) ax.text(2.5, 6.8, &#39;• 外部数据:关联大众点评消费评价&#39;, fontsize=9, color=&#39;#333&#39;) # 数据池节点(放大尺寸,确保文字容纳) data_pool = patches.Ellipse((2, 5.5), 1.2, 0.4, linewidth=2, edgecolor=&#39;#2E86AB&#39;, facecolor=&#39;#FFFFFF&#39;, zorder=5) # zorder提升层级,避免被遮挡 ax.add_patch(data_pool) ax.text(2, 5.5, &#39;用户原始数据池&#39;, fontsize=10, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#2E86AB&#39;) # -------------------------- 3. 数据流转箭头(延长长度,明确指向) -------------------------- arrow1 = FancyArrowPatch((2.6, 5.5), (4.2, 5.5), arrowstyle=&#39;->&#39;, mutation_scale=18, color=&#39;#666&#39;, linewidth=2, zorder=3) ax.add_patch(arrow1) ax.text(3.4, 5.6, &#39;数据流转:原始数据→清洗&#39;, fontsize=9, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#666&#39;) # 数据清洗节点(放大尺寸,文字分行调整) clean_node = patches.Rectangle((3.9, 5.2), 0.8, 0.6, linewidth=2, edgecolor=&#39;#F24236&#39;, facecolor=&#39;#FFE6E6&#39;, zorder=5) ax.add_patch(clean_node) ax.text(4.3, 5.5, &#39;数据清洗&#39;, fontsize=9, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#F24236&#39;) ax.text(4.3, 5.2, &#39;特征提取&#39;, fontsize=9, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#F24236&#39;) # -------------------------- 4. 第二阶段:用户数字画像构建(优化文本布局) -------------------------- # 阶段框(扩大宽度,增加内部间距) stage2 = patches.Rectangle((4.5, 3.8), 3.5, 2.2, linewidth=2, edgecolor=&#39;#F24236&#39;, facecolor=&#39;#FFE6E6&#39;, alpha=0.8) ax.add_patch(stage2) ax.text(6.25, 5.6, &#39;阶段二:用户数字画像构建&#39;, fontsize=13, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#F24236&#39;) # 步骤1:特征转化(调整x坐标,避免拥挤) ax.text(5.0, 5.2, &#39;步骤1:可量化特征转化&#39;, fontsize=11, fontweight=&#39;bold&#39;, color=&#39;#A62639&#39;) ax.text(5.0, 5.0, &#39;下单频率 | 客单价 | 会员等级 | 优惠券使用&#39;, fontsize=9, color=&#39;#333&#39;) # 步骤2:分类算法聚类(下移y坐标) ax.text(5.0, 4.6, &#39;步骤2:分类算法聚类&#39;, fontsize=11, fontweight=&#39;bold&#39;, color=&#39;#A62639&#39;) ax.text(5.0, 4.4, &#39;逻辑回归/决策树 → 划分3类用户&#39;, fontsize=9, color=&#39;#333&#39;) ax.text(5.0, 4.2, &#39;• 高忠诚度高消费用户 • 价格敏感型普通用户 • 低频尝鲜用户&#39;, fontsize=8, color=&#39;#333&#39;) # 步骤3:标签赋值(继续下移) ax.text(5.0, 3.8, &#39;步骤3:差异化标签赋值&#39;, fontsize=11, fontweight=&#39;bold&#39;, color=&#39;#A62639&#39;) ax.text(5.0, 3.6, &#39;• 高忠诚度→价格不敏感 • 普通用户→价格敏感 • 尝鲜用户→潜在敏感&#39;, fontsize=8, color=&#39;#333&#39;) # 画像库节点(放大尺寸,文字换行显示) portrait_lib = patches.Ellipse((6.25, 3.3), 1.5, 0.5, linewidth=2, edgecolor=&#39;#F24236&#39;, facecolor=&#39;#FFFFFF&#39;, zorder=5) ax.add_patch(portrait_lib) ax.text(6.25, 3.4, &#39;用户数字画像库&#39;, fontsize=10, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#F24236&#39;) ax.text(6.25, 3.2, &#39;(含价格敏感度标签)&#39;, fontsize=9, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#F24236&#39;) # -------------------------- 5. 数据流转箭头(调整角度,避免遮挡) -------------------------- arrow2 = FancyArrowPatch((7.0, 3.3), (8.2, 3.3), arrowstyle=&#39;->&#39;, mutation_scale=18, color=&#39;#666&#39;, linewidth=2, zorder=3) ax.add_patch(arrow2) ax.text(7.6, 3.4, &#39;画像输入:标签→定价算法&#39;, fontsize=9, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#666&#39;) # 算法输入节点(放大尺寸) input_node = patches.Rectangle((7.9, 3.0), 0.8, 0.6, linewidth=2, edgecolor=&#39;#FBBF24&#39;, facecolor=&#39;#FFF9E6&#39;, zorder=5) ax.add_patch(input_node) ax.text(8.3, 3.3, &#39;动态定价&#39;, fontsize=9, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#FBBF24&#39;) ax.text(8.3, 3.0, &#39;算法输入&#39;, fontsize=9, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#FBBF24&#39;) # -------------------------- 6. 第三阶段:三维动态定价(拆分文本,避免重叠) -------------------------- # 阶段框(扩大面积) stage3 = patches.Rectangle((8.5, 1.8), 2.2, 2.2, linewidth=2, edgecolor=&#39;#FBBF24&#39;, facecolor=&#39;#FFF9E6&#39;, alpha=0.8) ax.add_patch(stage3) ax.text(9.6, 3.6, &#39;阶段三:三维动态定价&#39;, fontsize=13, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#FBBF24&#39;) ax.text(9.6, 3.4, &#39;(需求-成本-敏感度)&#39;, fontsize=10, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#FBBF24&#39;) # 维度1:基础配送费(分行显示,增大间距) ax.text(8.8, 3.1, &#39;维度1:基础配送费&#39;, fontsize=10, fontweight=&#39;bold&#39;, color=&#39;#92400E&#39;) ax.text(8.8, 2.9, &#39;• 区域订单量 • 配送员数量&#39;, fontsize=8, color=&#39;#333&#39;) ax.text(8.8, 2.7, &#39;• 时段调整:早高峰+2元&#39;, fontsize=8, color=&#39;#333&#39;) # 维度2:敏感度系数(下移) ax.text(8.8, 2.3, &#39;维度2:敏感度系数&#39;, fontsize=10, fontweight=&#39;bold&#39;, color=&#39;#92400E&#39;) ax.text(8.8, 2.1, &#39;• 不敏感用户:+5%-15%&#39;, fontsize=8, color=&#39;#333&#39;) ax.text(8.8, 1.9, &#39;• 敏感用户:-3%-8%&#39;, fontsize=8, color=&#39;#333&#39;) # 维度3:实时场景(右移x坐标) ax.text(10.0, 3.1, &#39;维度3:实时场景&#39;, fontsize=10, fontweight=&#39;bold&#39;, color=&#39;#92400E&#39;) ax.text(10.0, 2.9, &#39;• 恶劣天气 • 紧急订单&#39;, fontsize=8, color=&#39;#333&#39;) ax.text(10.0, 2.7, &#39;• 节假日需求波动&#39;, fontsize=8, color=&#39;#333&#39;) # 价格输出节点(放大,文字加粗) price_output = patches.Rectangle((9.2, 1.5), 1.0, 0.4, linewidth=2, edgecolor=&#39;#FBBF24&#39;, facecolor=&#39;#FFFFFF&#39;, zorder=5) ax.add_patch(price_output) ax.text(9.7, 1.7, &#39;输出最终配送费&#39;, fontsize=10, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#FBBF24&#39;) # -------------------------- 7. 最终杀熟案例对比(扩大案例框,加粗关键数据) -------------------------- # 案例1:会员用户 case1 = patches.Rectangle((0.5, 1.0), 3.0, 0.6, linewidth=2, edgecolor=&#39;#666&#39;, facecolor=&#39;#F5F5F5&#39;, zorder=5) ax.add_patch(case1) ax.text(2.0, 1.4, &#39;案例1:高忠诚度会员(早高峰)&#39;, fontsize=10, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#333&#39;) ax.text(2.0, 1.1, &#39;基础3元 + 10%上浮 → 3.3元&#39;, fontsize=9, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#D32F2F&#39;) # 关键价格加粗标红 # 案例2:普通用户 case2 = patches.Rectangle((4.0, 1.0), 3.0, 0.6, linewidth=2, edgecolor=&#39;#666&#39;, facecolor=&#39;#F5F5F5&#39;, zorder=5) ax.add_patch(case2) ax.text(5.5, 1.4, &#39;案例2:普通价格敏感用户(同期)&#39;, fontsize=10, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#333&#39;) ax.text(5.5, 1.1, &#39;基础3元 + 3%上浮 → 3.09元&#39;, fontsize=9, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#1976D2&#39;) # 关键价格加粗标蓝 # 杀熟结果节点(加背景色突出) result = patches.Rectangle((7.8, 1.0), 2.8, 0.6, linewidth=2, edgecolor=&#39;#F24236&#39;, facecolor=&#39;#FFE6E6&#39;, zorder=5) ax.add_patch(result) ax.text(9.2, 1.4, &#39;最终结果:形成价差,实现“大数据杀熟”&#39;, fontsize=11, fontweight=&#39;bold&#39;, ha=&#39;center&#39;, va=&#39;center&#39;, color=&#39;#F24236&#39;) # -------------------------- 8. 图例(放大字号,调整位置) -------------------------- legend_elements = [ patches.Patch(color=&#39;#E6F3FF&#39;, edgecolor=&#39;#2E86AB&#39;, label=&#39;阶段一:多渠道数据采集&#39;), patches.Patch(color=&#39;#FFE6E6&#39;, edgecolor=&#39;#F24236&#39;, label=&#39;阶段二:用户数字画像构建&#39;), patches.Patch(color=&#39;#FFF9E6&#39;, edgecolor=&#39;#FBBF24&#39;, label=&#39;阶段三:三维动态定价&#39;) ] ax.legend(handles=legend_elements, loc=&#39;upper left&#39;, bbox_to_anchor=(0.02, 0.98), fontsize=11, frameon=True, facecolor=&#39;#FFFFFF&#39;) # 图例加白色背景,提升可读性 # 保存图片(确保文字完整容纳) plt.savefig(&#39;meituan_tech_roadmap_fixed.png&#39;, bbox_inches=&#39;tight&#39;, dpi=150, facecolor=&#39;white&#39;) plt.close() print("修复版技术路线图已生成,保存为:meituan_tech_roadmap_fixed.png")
11-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值