Hadoop Research Topics

本文探讨了Hadoop中若干潜在改进方向,包括资源感知调度、动态数据复制、内存数据处理等,旨在为学生提供Hadoop相关项目的灵感。

 

Recently, I visited a few premier educational institutes in India, e.g. Indian Institute of Technology (IIT) at Delhi and Guwahati. Most of the undergraduate students at these two institutes are somewhat familiar with Hadoop and would like to work on Hadoop related projects as part of their course work. One commonly asked question that I got from these students is what Hadoop feature can I work on?

 

Here are some items that I have in mind that are good topics for students to attempt if they want to work in Hadoop.

  • Ability to make Hadoop scheduler resource aware, especially CPU, memory and IO resources. The current implementation is based on statically configured slots.
  • Abilty to make a map-reduce job take new input splits even after a map-reduce job has already started.
  • Ability to dynamically increase replicas of data in HDFS based on access patterns. This is needed to handle hot-spots of data.
  • Ability to extend the map-reduce framework to be able to process data that resides partly in memory. One assumption of the current implementation is that the map-reduce framework is used to scan data that resides on disk devices. But memory on commodity machines is becoming larger and larger. A cluster of 3000 machines with 64 GB each can keep about 200TB of data in memory! It would be nice if the hadoop framework can support caching the hot set of data on the RAM of the tasktracker machines. Performance should increase dramatically because it is costly to serialize/compress data from the disk into memory for every query.
  • Heuristics to efficiently 'speculate' map-reduce tasks to help work around machines that are laggards. In the cloud, the biggest challenge for fault tolerance is not to handle failures but rather anomalies that makes parts of the cloud slow (but not fail completely), these impact performance of jobs.
  • Make map-reduce jobs work across data centers. In many cases, a single hadoop cluster cannot fit into a single data center and a user has to partition the dataset into two hadoop clusters in two different data centers.
  • High Availability of the JobTracker. In the current implementation, if the JobTracker machine dies, then all currently running jobs fail.
  • Ability to create snapshots in HDFS. The primary use of these snapshots is to retrieve a dataset that was erroneously modified/deleted by a buggy application.

The first thing for a student who wants to do any of these projects is to download the code from HDFS andMAPREDUCE. Then create an account in the bug tracking software here. Please search for an existing JIRA that describes your project; if none exists then please create a new JIRA. Then please write a design document proposal so that the greater Apache Hadoop community can deliberate on the proposal and post this document to the relevant JIRA.

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值