openNLP(1)_分词

本文介绍了使用openNLP进行分词的过程,包括所需下载的模型文件及具体代码实现方式。通过实例演示如何将字符串切分为单词。
部署运行你感兴趣的模型镜像
前端时间看了一下openNLP,用了一下,把自己的体会写下来。。
首先,openNLP是关于自然语言处理的开源项目,可以用eclipse作为第三方插件,去它的官方网站http://incubator.apache.org/opennlp/index.html下载需要的包,或者直接去http://sourceforge.net/projects/opennlp/ 下载。导入三个包:maxent-3.0.0.jar,jwnl-1.3.3.jar,opennlp-tools-1.5.0.jar

下面说一下分词:
openNLP使用了不同的模型实现诸如分词,分句,标注。所以在使用之前需要下载对应的模型http://opennlp.sourceforge.net/models-1.5/
包括了六种语言。分词上我下的英文:en-token.bin加到项目中就可以了
分词的代码:
import java.io.*;
import opennlp.tools.tokenize.Tokenizer;
import opennlp.tools.tokenize.TokenizerME;
import opennlp.tools.tokenize.TokenizerModel;
/*
*输入:需要分词的字符串
*输出:字符串数组
*/
public String[] Token(String str){
try{
InputStream modelIn = new FileInputStream("en-token.bin");
TokenizerModel model = null;
try {
model = new TokenizerModel(modelIn);
}
catch (IOException e) {
e.printStackTrace();
}
finally {
if (modelIn != null) {
try {
modelIn.close();
}
catch (IOException e) {
}
}
}
Tokenizer tokenizer = new TokenizerME(model);
String tokens[] = tokenizer.tokenize(str);
return tokens;
}
catch(FileNotFoundException e){return null;}
}
-----------------------------------------------------------------------------
了解的不深入,希望多多指教

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值