(define (square x)
(* x x))
(define (smallest-divisor n)
(find-divisor n 2))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)
(= (remainder b a) 0))
(define (prime? n)
(= (smallest-divisor n) n))
(define (search-for-primes start-num end-num)
(search-for-primes-iter start-num end-num (runtime)))
(define (search-for-primes-iter start-num end-num start-time)
(cond ((< start-num end-num) (begin (prime? start-num)
(search-for-primes-iter (+ start-num 1) end-num start-time)))
((= start-num end-num) (begin (prime? start-num)
(newline)
(display "all over time: ")
(display(- (runtime) start-time))
(newline)
(- (runtime) start-time)))))
;(search-for-primes 1000000 1000100)
;(search-for-primes 10000000 10000100)
;(search-for-primes 100000000 100000100)
(/ (search-for-primes 10000000 10001000) (search-for-primes 1000000 1001000) 1.0)
(/ (search-for-primes 100000000 100001000) (search-for-primes 10000000 10001000) 1.0)
(/ (search-for-primes 1000000000 1000001000) (search-for-primes 100000000 100001000) 1.0)
(/ (search-for-primes 10000000000 10000001000) (search-for-primes 1000000000 1000001000) 1.0)