求无向图的点连通度,一般的方法就是转化为网络流来求解
构建网络流模型:
若G为无向图:
(1)原G图中的每个顶点V变成N网中的两个顶点V'和V'',顶点V'至V''有一条弧容量为1;
(2)原图G中的每条边e=(U,V),在N网中有两条弧e'=(U'',V'),e''=(V'',U')与之对应,e'与e''容量均为无穷;
(3)以某点为源点,枚举汇点,求最大流。
其中源点的确立有一个条件,就是这个点不能和其他的所有点都相邻,如果都相邻,显然是无法求出最小割的。 所以在确立源点的时候不能直接随意选点。
转载了一段关于为什么只要枚举汇点:
假设点连通度为k,那么如果你枚举源汇,我们构图的时候是拆点的,所有最小割中最小的一定是k,对应k个点,割边为这k个点拆点后对应的边,那么,这个最小割把所有点点分成了两部分,S和T集合,S和T集合中的点都是不连通的,而S集合中的点都是连通的,T集合中的点也都是连通的,对于任意一个点i属于S,任意一个点j属于T,要使得他们不连通,在图中删除的点都为k,不可能更小了,否则最小割值比k小,而如果他们同时属于S集合或者T集合,使得他们不连通,要删除的点大于k,因为他们现在还连通,于是,如果我们指定一个源点,枚举汇点,如果这个源点与汇点同时在刚才那个最小割的S或T集合中,要使他们不连通,删除的点必然大于k,如果他们一个属于S,一个属于T,那么使他们不连通,要删除的点就是k个,所以,只要枚举汇点就行了
/* ID: sdj22251 PROG: subset LANG: C++ */ #include <iostream> #include <vector> #include <list> #include <map> #include <set> #include <deque> #include <queue> #include <stack> #include <bitset> #include <algorithm> #include <functional> #include <numeric> #include <utility> #include <sstream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstdlib> #include <cctype> #include <string> #include <cstring> #include <cmath> #include <ctime> #define LOCA #define MAXN 1005 #define INF 100000000 #define eps 1e-7 using namespace std; const int maxnode = 102; const int infinity = 100000000; struct edge { int ver; // vertex int cap; // capacity int flow; // current flow in this arc edge *next; // next arc edge *rev; // reverse arc edge() {} edge(int Vertex, int Capacity, edge *Next) :ver(Vertex), cap(Capacity), flow(0), next(Next), rev((edge*)NULL) {} void* operator new(size_t, void *p) //返回新的空间 { return p; } }*Net[maxnode]; int dist[maxnode]= {0}, numbs[maxnode] = {0}, src, des, n; void rev_BFS() { int Q[maxnode], head = 0, tail = 0; for(int i = 1; i <= n; ++i) { dist[i] = maxnode; numbs[i] = 0; } Q[tail++] = des; dist[des] = 0; numbs[0] = 1; while(head != tail) { int v = Q[head++]; for(edge *e = Net[v]; e; e = e->next) { if(e -> rev -> cap == 0 || dist[e -> ver] < maxnode)continue; dist[e -> ver] = dist[v] + 1; ++numbs[dist[e -> ver]]; Q[tail++] = e -> ver; } } } int maxflow() { int u, totalflow = 0; edge *CurEdge[maxnode], *revpath[maxnode]; for(int i = 1; i <= n; ++i) { CurEdge[i]= Net[i]; } u = src; while(dist[src] < n) { if(u == des) // find an augmenting path { int augflow = infinity; for(int i = src; i != des; i = CurEdge[i] -> ver) augflow = min(augflow, CurEdge[i] -> cap); for(int i = src; i != des; i = CurEdge[i] -> ver) { CurEdge[i] -> cap -= augflow; CurEdge[i] -> rev -> cap += augflow; CurEdge[i] -> flow += augflow; CurEdge[i] -> rev -> flow -= augflow; } totalflow += augflow; u = src; } edge *e; for(e = CurEdge[u]; e; e = e -> next) if(e -> cap > 0 && dist[u] == dist[e -> ver] + 1)break; if(e) // find an admissible arc, then Advance { CurEdge[u] = e; revpath[e -> ver] = e -> rev; u = e -> ver; } else // no admissible arc, then relabel this vertex { if(0 == (--numbs[dist[u]]))break; // GAP cut, Important! CurEdge[u] = Net[u]; int mindist = n; for(edge *te = Net[u]; te; te = te -> next) if(te -> cap > 0)mindist = min(mindist, dist[te -> ver]); dist[u] = mindist + 1; ++numbs[dist[u]]; if(u != src) u = revpath[u] -> ver; // Backtrack } } return totalflow; } int main() { int m, u, v, w; int x[1550], y[1550]; int mp[55][55]; while(scanf("%d%d", &n, &m) != EOF) { memset(mp, 0, sizeof(mp)); src = n + 1; for(int i = 1; i <= m; i++) { scanf(" (%d,%d)", &u, &v); u++; v++; x[i] = u; y[i] = v; mp[u][v] = mp[v][u] = 1; } for(int i = 1; i <= n; i++) { bool flag = false; for(int j = i + 1; j <= n; j++) { if(mp[i][j] == 0) { flag = true; break; } } if(flag) { src = n + i; break; } } int N = n; n = n * 2; int ans = INF; for(int j = 1; j <= N; j++) { if(src - N == j) continue; des = j; memset(Net, 0, sizeof(Net)); memset(dist, 0, sizeof(dist)); memset(numbs, 0, sizeof(numbs)); edge *buffer = new edge[5 * m + 4 * N]; edge *data = buffer; for(int i = 1; i <= N; i++) { u = i; v = i + N; w = 1; Net[u] = new((void*) data++) edge(v, w, Net[u]); Net[v] = new((void*) data++) edge(u, 0, Net[v]); Net[u] -> rev = Net[v]; Net[v] -> rev = Net[u]; } for(int i = 1; i <= m; i++) { u = x[i]; v = y[i]; int uu = u + N; int vv = v + N; w = infinity; Net[uu] = new((void*) data++) edge(v, w, Net[uu]); Net[v] = new((void*) data++) edge(uu, 0, Net[v]); Net[uu] -> rev = Net[v]; Net[v] -> rev = Net[uu]; Net[vv] = new((void*) data++) edge(u, w, Net[vv]); Net[u] = new((void*) data++) edge(vv, 0, Net[u]); Net[vv] -> rev = Net[u]; Net[u] -> rev = Net[vv]; } rev_BFS(); ans = min(ans, maxflow()); //printf("dfds %d\n", ans); delete [] buffer; } if(ans >= INF) ans = N; //就本题而言,一个点孤立的情况也算连通,所以是n,而一般情况下,完全图的点连通度是n-1 printf("%d\n", ans); } return 0; }