1050pku To the Max 解题报告

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15


解题思路:这个和一维数组截取一个字段得到的最值是一一样的,只是一维变成二维的,所以要对 数据进行处理,使得像一维数据那样处理,用一个三维的数组来保存一个列里,从i行到j行的和,然 后接着就是像一维数组一样从1~n列,只是这个不是一个数组而已,加了很多数组,这样就可以取他们 中最大的最大即可。(动态规划) 
代码如下: 
Code:
  1. #include<iostream>
  2. usingnamespacestd;
  3. constintMax(101);
  4. intsum[Max][Max][Max];//用来保存在一个列里,从i行到j行的和
  5. intmain()
  6. {
  7. intn;
  8. while(cin>>n)
  9. {
  10. intdata[Max][Max];
  11. for(inti=1;i<=n;i++)
  12. {
  13. for(intj=1;j<=n;j++)
  14. {
  15. cin>>data[i][j];
  16. sum[i][i][j]=data[i][j];//先初始化为自己那一格的值
  17. }
  18. }
  19. for(inti=1;i<=n;i++)
  20. {
  21. for(intj=i+1;j<=n;j++)
  22. {
  23. for(intk=1;k<=n;k++)
  24. {
  25. sum[i][j][k]=sum[i][j-1][k]+data[j][k];//计算出在k列从i行到j行的和
  26. }
  27. }
  28. }
  29. intMaxSum=-9999;//先让初始化他们的最大值
  30. for(inti=1;i<=n;i++)
  31. {
  32. for(intj=i;j<=n;j++)
  33. {
  34. inttemp=0;
  35. for(intk=1;k<=n;k++)//和一维数组的得最大的段和是一样的操作
  36. {
  37. if(temp>=0)
  38. temp+=sum[i][j][k];
  39. else
  40. temp=sum[i][j][k];
  41. if(temp>MaxSum)
  42. MaxSum=temp;
  43. }
  44. }
  45. }
  46. cout<<MaxSum<<endl;
  47. }
  48. return0;
  49. }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值