convert table and column collection to UTF-8

本文介绍如何使用SQL命令将数据库表的字符集转换为UTF8,包括具体语法和实例演示。
alter table [TABLE NAME] convert to character set utf8 collate utf8_unicode_ci;

 

METHOD set_title. DATA: lo_worksheets_iterator TYPE REF TO zcl_excel_collection_iterator, lo_worksheet TYPE REF TO zcl_excel_worksheet, lv_rangesheetname_old TYPE string, lv_rangesheetname_new TYPE string, lo_ranges_iterator TYPE REF TO zcl_excel_collection_iterator, lo_range TYPE REF TO zcl_excel_range, lv_range_value TYPE zexcel_range_value, lv_errormessage TYPE string. " Can't pass '...'(abc) to exception-class *--------------------------------------------------------------------* * Check whether title consists only of allowed characters * Illegal characters are: / \ [ ] * ? : --> http://msdn.microsoft.com/en-us/library/ff837411.aspx * Illegal characters not in documentation: ' as first character *--------------------------------------------------------------------* IF ip_title CA '/\[]*?:'. lv_errormessage = 'Found illegal character in sheetname. List of forbidden characters: /\[]*?:'(402). zcx_excel=>raise_text( lv_errormessage ). ENDIF. IF ip_title IS NOT INITIAL AND ip_title(1) = `'`. lv_errormessage = 'Sheetname may not start with &'(403). " & used instead of ' to allow fallbacklanguage REPLACE '&' IN lv_errormessage WITH `'`. zcx_excel=>raise_text( lv_errormessage ). ENDIF. *--------------------------------------------------------------------* * Check whether title is unique in workbook *--------------------------------------------------------------------* lo_worksheets_iterator = me->excel->get_worksheets_iterator( ). WHILE lo_worksheets_iterator->has_next( ) = abap_true. lo_worksheet ?= lo_worksheets_iterator->get_next( ). CHECK me->guid <> lo_worksheet->get_guid( ). " Don't check against itself IF ip_title = lo_worksheet->get_title( ). " Not unique --> raise exception lv_errormessage = 'Duplicate sheetname &'. REPLACE '&' IN lv_errormessage WITH ip_title. zcx_excel=>raise_text( lv_errormessage ). ENDIF. ENDWHILE. *--------------------------------------------------------------------* * Remember old sheetname and rename sheet to desired name *--------------------------------------------------------------------* lv_rangesheetname_old = zcl_excel_common=>escape_string( me->title ) && '!'. me->title = ip_title. *--------------------------------------------------------------------* * After changing this worksheet's title we have to adjust * all ranges that are referring to this worksheet. *--------------------------------------------------------------------* lv_rangesheetname_new = zcl_excel_common=>escape_string( me->title ) && '!'. lo_ranges_iterator = me->excel->get_ranges_iterator( ). "workbookglobal ranges WHILE lo_ranges_iterator->has_next( ) = abap_true. lo_range ?= lo_ranges_iterator->get_next( ). lv_range_value = lo_range->get_value( ). REPLACE ALL OCCURRENCES OF lv_rangesheetname_old IN lv_range_value WITH lv_rangesheetname_new. IF sy-subrc = 0. lo_range->set_range_value( lv_range_value ). ENDIF. ENDWHILE. IF me->ranges IS BOUND. "not yet bound if called from worksheet's constructor lo_ranges_iterator = me->get_ranges_iterator( ). "sheetlocal ranges, repeat rows and columns WHILE lo_ranges_iterator->has_next( ) = abap_true. lo_range ?= lo_ranges_iterator->get_next( ). lv_range_value = lo_range->get_value( ). REPLACE ALL OCCURRENCES OF lv_rangesheetname_old IN lv_range_value WITH lv_rangesheetname_new. IF sy-subrc = 0. lo_range->set_range_value( lv_range_value ). ENDIF. ENDWHILE. ENDIF. ENDMETHOD.
最新发布
08-23
import chardet import streamlit as st import pandas as pd import numpy as np import joblib import os import time import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.font_manager as fm import seaborn as sns from pyspark.sql import SparkSession from pyspark.ml.feature import VectorAssembler, StandardScaler from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier, RandomForestClassifier from pyspark.ml.evaluation import BinaryClassificationEvaluator from pyspark.ml.tuning import ParamGridBuilder, CrossValidator from pyspark.sql.functions import when, col from sklearn.metrics import classification_report, confusion_matrix import warnings import dask.dataframe as dd from dask.diagnostics import ProgressBar from dask_ml.preprocessing import StandardScaler as DaskStandardScaler import tempfile import shutil warnings.filterwarnings("ignore") plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False # 页面设置 st.set_page_config( page_title="单宽转融用户预测系统", page_icon="📶", layout="wide", initial_sidebar_state="expanded" ) # 自定义CSS样式 st.markdown(""" <style> .stApp { background: linear-gradient(135deg, #f5f7fa 0%, #e4edf5 100%); font-family: 'Helvetica Neue', Arial, sans-serif; } .header { background: linear-gradient(90deg, #2c3e50 0%, #4a6491 100%); color: white; padding: 1.5rem; border-radius: 0.75rem; box-shadow: 0 4px 12px rgba(0,0,0,0.1); margin-bottom: 2rem; } .card { background: white; border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; box-shadow: 0 4px 12px rgba(0,0,0,0.08); transition: transform 0.3s ease; } .card:hover { transform: translateY(-5px); box-shadow: 0 6px 16px rgba(0,0,0,0.12); } .stButton button { background: linear-gradient(90deg, #3498db 0%, #1a5276 100%) !important; color: white !important; border: none !important; border-radius: 0.5rem; padding: 0.75rem 1.5rem; font-size: 1rem; font-weight: 600; transition: all 0.3s ease; width: 100%; } .stButton button:hover { transform: scale(1.05); box-shadow: 0 4px 8px rgba(52, 152, 219, 0.4); } .feature-box { background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%); border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; } .result-box { background: linear-gradient(135deg, #e8f5e9 0%, #c8e6c9 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .model-box { background: linear-gradient(135deg, #fff3e0 0%, #ffe0b2 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .stProgress > div > div > div { background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%) !important; } .metric-card { background: white; border-radius: 0.75rem; padding: 1rem; text-align: center; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .metric-value { font-size: 1.8rem; font-weight: 700; color: #2c3e50; } .metric-label { font-size: 0.9rem; color: #7f8c8d; margin-top: 0.5rem; } .highlight { background: linear-gradient(90deg, #ffeb3b 0%, #fbc02d 100%); padding: 0.2rem 0.5rem; border-radius: 0.25rem; font-weight: 600; } .stDataFrame { border-radius: 0.75rem; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .risk-high { background-color: #ffcdd2 !important; color: #c62828 !important; font-weight: 700; } .risk-medium { background-color: #fff9c4 !important; color: #f57f17 !important; font-weight: 600; } .risk-low { background-color: #c8e6c9 !important; color: #388e3c !important; } </style> """, unsafe_allow_html=True) def preprocess_data(ddf): """使用Dask进行大数据预处理""" processed_ddf = ddf.copy() # 删除无意义特征 drop_cols = ['BIL_MONTH', 'ASSET_ROW_ID', 'CCUST_ROW_ID', 'BELONG_CITY', 'MKT_CHANNEL_NAME', 'MKT_CHANNEL_SUB_NAME', 'PREPARE_FLG', 'SERV_START_DT', 'COMB_STAT_NAME', 'FIBER_ACCESS_CATEGORY'] existing_cols = [col for col in drop_cols if col in processed_ddf.columns] processed_ddf = processed_ddf.drop(columns=existing_cols) # 处理缺失值 numeric_cols = processed_ddf.select_dtypes(include=[np.number]).columns.tolist() if 'is_rh_next' in numeric_cols: numeric_cols.remove('is_rh_next') with ProgressBar(): means = processed_ddf[numeric_cols].mean().compute() for col in numeric_cols: processed_ddf[col] = processed_ddf[col].fillna(means[col]) # 类型转换 for col in numeric_cols: if processed_ddf[col].dtype == 'float64': if processed_ddf[col].dropna().apply(lambda x: x == int(x)).all(): processed_ddf[col] = processed_ddf[col].astype('Int64') else: processed_ddf[col] = processed_ddf[col].astype('float64') object_cols = processed_ddf.select_dtypes(include=['object']).columns.tolist() for col in object_cols: processed_ddf[col] = processed_ddf[col].fillna("Unknown") # 离散特征编码 binary_cols = ['IF_YHTS', 'is_kdts', 'is_itv_up', 'is_mobile_up', 'if_zzzw_up'] for col in binary_cols: if col in processed_ddf.columns: processed_ddf[col] = processed_ddf[col].map({'否': 0, '是': 1, 0: 0, 1: 1, 'Unknown': -1}) if 'GENDER' in processed_ddf.columns: gender_mapping = {'男': 0, '女': 1, 'Unknown': -1} processed_ddf['GENDER'] = processed_ddf['GENDER'].map(gender_mapping) if 'MKT_STAR_GRADE_NAME' in processed_ddf.columns: star_mapping = {'五星级': 5, '四星级': 4, '三星级': 3, '二星级': 2, '一星级': 1, 'Unknown': 0} processed_ddf['MKT_STAR_GRADE_NAME'] = processed_ddf['MKT_STAR_GRADE_NAME'].map(star_mapping) # 特征工程 if 'PROM_AMT' in processed_ddf.columns and 'STMT_AMT' in processed_ddf.columns: processed_ddf['CONSUMPTION_RATIO'] = processed_ddf['PROM_AMT'] / (processed_ddf['STMT_AMT'] + 1) if 'DWN_VOL' in processed_ddf.columns and 'ONLINE_DAY' in processed_ddf.columns: processed_ddf['TRAFFIC_DENSITY'] = processed_ddf['DWN_VOL'] / (processed_ddf['ONLINE_DAY'] + 1) if 'TERM_CNT' in processed_ddf.columns: processed_ddf['HAS_TERMINAL'] = (processed_ddf['TERM_CNT'] > 0).astype(int) # 标准化处理 scaler = DaskStandardScaler() numeric_cols_for_scaling = [col for col in numeric_cols if col != 'is_rh_next'] if numeric_cols_for_scaling: processed_ddf[numeric_cols_for_scaling] = scaler.fit_transform(processed_ddf[numeric_cols_for_scaling]) feature_cols = [col for col in processed_ddf.columns if col != 'is_rh_next'] return processed_ddf, feature_cols, means, numeric_cols_for_scaling, scaler def create_spark_session(): """创建或获取现有的Spark会话""" return SparkSession.builder \ .appName("SingleToMeltUserPrediction") \ .config("spark.sql.shuffle.partitions", "8") \ .config("spark.driver.memory", "8g") \ .config("spark.executor.memory", "8g") \ .getOrCreate() def train_models(spark_df, feature_cols): """使用Spark训练多个模型并评估性能""" spark = create_spark_session() assembler = VectorAssembler(inputCols=feature_cols, outputCol="rawFeatures") assembled_df = assembler.transform(spark_df) scaler = StandardScaler(inputCol="rawFeatures", outputCol="features") scaler_model = scaler.fit(assembled_df) scaled_df = scaler_model.transform(assembled_df) train_df, test_df = scaled_df.randomSplit([0.8, 0.2], seed=42) # 定义模型和参数网格 models = { "逻辑回归": ( LogisticRegression(featuresCol="features", labelCol="is_rh_next"), ParamGridBuilder().addGrid(LogisticRegression.regParam, [0.01, 0.1]) .addGrid(LogisticRegression.elasticNetParam, [0.0, 0.5]) .build() ), "决策树": ( DecisionTreeClassifier(featuresCol="features", labelCol="is_rh_next"), ParamGridBuilder().addGrid(DecisionTreeClassifier.maxDepth, [5, 10]) .addGrid(DecisionTreeClassifier.minInstancesPerNode, [10, 20]) .build() ), "随机森林": ( RandomForestClassifier(featuresCol="features", labelCol="is_rh_next", numTrees=10), ParamGridBuilder().addGrid(RandomForestClassifier.numTrees, [10, 20]) .addGrid(RandomForestClassifier.maxDepth, [5, 10]) .build() ) } evaluator = BinaryClassificationEvaluator(labelCol="is_rh_next", metricName="areaUnderROC") results = {} for model_name, (model, param_grid) in models.items(): with st.spinner(f"正在训练{model_name}模型..."): cv = CrossValidator(estimator=model, estimatorParamMaps=param_grid, evaluator=evaluator, numFolds=3) cv_model = cv.fit(train_df) predictions = cv_model.transform(test_df) auc = evaluator.evaluate(predictions) accuracy = predictions.filter(predictions.is_rh_next == predictions.prediction).count() / test_df.count() results[model_name] = { "model": cv_model, "auc": auc, "accuracy": accuracy, "best_params": cv_model.bestModel._java_obj.parent().extractParamMap(), "feature_importances": getattr(cv_model.bestModel, "featureImportances", {}).toArray().tolist() if model_name != "逻辑回归" else None } return results # 页面布局 st.markdown(""" <div class="header"> <h1 style='text-align: center; margin: 0;'>单宽转融用户预测系统</h1> <p style='text-align: center; margin: 0.5rem 0 0; font-size: 1.1rem;'>基于大数据挖掘的精准营销分析平台</p> </div> """, unsafe_allow_html=True) col1, col2 = st.columns([1, 1.5]) with col1: st.markdown(""" <div class="feature-box"> <h4>📈 系统功能</h4> <ul> <li>用户转化预测</li> <li>多模型对比分析</li> <li>特征重要性分析</li> <li>可视化数据洞察</li> </ul> </div> """, unsafe_allow_html=True) st.image("https://images.unsplash.com/photo-1550751822256-00808c92fc8d?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1200&q=80", caption="精准营销示意图", use_column_width=True) with col2: option = st.radio("", ["🚀 训练新模型 - 使用新数据训练预测模型", "🔍 模型分析 - 查看现有模型的分析结果"], index=0, label_visibility="hidden") if "训练新模型" in option: st.markdown("<div class='model-box'><h4>模型训练</h4><p>上传训练数据并训练新的预测模型</p></div>", unsafe_allow_html=True) train_file = st.file_uploader("上传训练数据 (CSV格式)", type=["csv"], accept_multiple_files=False) if train_file is not None: try: with tempfile.TemporaryDirectory() as tmpdir: tmp_path = os.path.join(tmpdir, "large_file.csv") with open(tmp_path, "wb") as f: f.write(train_file.getvalue()) def detect_encoding(file_path): with open(file_path, 'rb') as f: raw_data = f.read(10000) result = chardet.detect(raw_data) return result['encoding'] detected_encoding = detect_encoding(tmp_path) st.info(f"检测到文件编码: {detected_encoding}") chunksize = 256 * 1024 * 1024 na_values_list = ['', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'] try: raw_ddf = dd.read_csv( tmp_path, blocksize=chunksize, dtype={'is_rh_next': 'float64'}, encoding=detected_encoding, na_values=na_values_list, assume_missing=True, low_memory=False ) except UnicodeDecodeError: st.warning("检测编码读取失败,尝试GB18030编码...") raw_ddf = dd.read_csv( tmp_path, blocksize=chunksize, dtype={'is_rh_next': 'float64'}, encoding='GB18030', na_values=na_values_list, assume_missing=True, low_memory=False ) with st.expander("数据预览", expanded=True): preview_data = raw_ddf.head(1000) st.dataframe(preview_data) col1, col2 = st.columns(2) col1.metric("总样本数", f"{raw_ddf.shape[0].compute():,}") col2.metric("特征数量", len(raw_ddf.columns)) if 'is_rh_next' not in raw_ddf.columns: st.warning("⚠️ 注意:未找到目标变量 'is_rh_next'") if st.button("开始数据预处理", use_container_width=True): with st.spinner("正在进行数据预处理,请稍候..."): processed_ddf, feature_cols, means, numeric_cols_for_scaling, scaler = preprocess_data(raw_ddf) preprocessor_params = { 'means': means, 'numeric_cols_for_scaling': numeric_cols_for_scaling, 'scaler': scaler, 'feature_cols': feature_cols } joblib.dump(preprocessor_params, 'preprocessor_params.pkl') processed_ddf.to_csv('processed_data_*.csv', index=False) st.success("✅ 数据预处理完成!") # 显示处理后的数据统计 st.subheader("数据质量检查") with st.spinner("计算缺失值统计..."): null_counts = processed_ddf.isnull().sum().compute() st.write("缺失值统计:") st.write(null_counts[null_counts > 0]) # 可视化关键特征分布 st.subheader("关键特征分布") sample_ddf = processed_ddf.sample(frac=0.1) sample_df = sample_ddf.compute() fig, axes = plt.subplots(2, 2, figsize=(12, 10)) sns.histplot(sample_df['AGE'], ax=axes[0, 0], kde=True) sns.histplot(sample_df['ONLINE_DAY'], ax=axes[0, 1], kde=True) sns.histplot(sample_df['PROM_AMT'], ax=axes[1, 0], kde=True) sns.histplot(sample_df['DWN_VOL'], ax=axes[1, 1], kde=True) plt.tight_layout() st.pyplot(fig) # 目标变量分布 st.subheader("目标变量分布") fig, ax = plt.subplots(figsize=(6, 4)) sns.countplot(x='is_rh_next', data=sample_df, ax=ax) ax.set_xlabel("是否转化 (0=未转化, 1=转化)") ax.set_ylabel("用户数量") ax.set_title("用户转化分布") st.pyplot(fig) # 特征与目标变量相关性 st.subheader("特征与转化的相关性") with st.spinner("计算特征相关性..."): correlation = sample_df[feature_cols + ['is_rh_next']].corr()['is_rh_next'].sort_values(ascending=False) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x=correlation.values, y=correlation.index, ax=ax) ax.set_title("特征与转化的相关性") st.pyplot(fig) # 模型训练 if st.button("开始模型训练", use_container_width=True): if not any(fname.startswith('processed_data_') for fname in os.listdir('.')): st.error("请先进行数据预处理") else: spark = create_spark_session() spark_df = spark.read.csv('processed_data_*.csv', header=True, inferSchema=True) preprocessor_params = joblib.load('preprocessor_params.pkl') feature_cols = preprocessor_params['feature_cols'] with st.spinner("正在训练模型,请耐心等待..."): results = train_models(spark_df, feature_cols) joblib.dump(results, 'model_results.pkl') st.success("🎉 模型训练完成!") # 显示模型比较 st.subheader("模型性能对比") model_performance = pd.DataFrame({ '模型': ['逻辑回归', '决策树', '随机森林'], '准确率': [results['逻辑回归']['accuracy'], results['决策树']['accuracy'], results['随机森林']['accuracy']], 'AUC': [results['逻辑回归']['auc'], results['决策树']['auc'], results['随机森林']['auc']] }).sort_values('AUC', ascending=False) st.table(model_performance.style.format({ '准确率': '{:.2%}', 'AUC': '{:.4f}' })) # 最佳模型特征重要性 best_model_name = model_performance.iloc[0]['模型'] model_map = {'逻辑回归': 'logistic_regression', '决策树': 'decision_tree', '随机森林': 'random_forest'} best_model_key = model_map[best_model_name] best_model = results[best_model_key]['model'].bestModel st.subheader(f"最佳模型 ({best_model_name}) 分析") if best_model_key in ['decision_tree', 'random_forest']: feature_importances = results[best_model_key]['feature_importances'] importance_df = pd.DataFrame({ '特征': feature_cols, '重要性': feature_importances }).sort_values('重要性', ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x='重要性', y='特征', data=importance_df, ax=ax) ax.set_title('Top 10 重要特征') st.pyplot(fig) # 显示最佳模型参数 st.subheader("最佳模型参数") params = results[best_model_key]['best_params'] param_table = pd.DataFrame({ '参数': [str(param.name) for param in params.keys()], '值': [str(value) for value in params.values()] }) st.table(param_table) except Exception as e: st.error(f"数据处理错误: {str(e)}") st.exception(e) else: st.markdown("<div class='model-box'><h4>模型分析</h4><p>查看已有模型的详细分析结果</p></div>", unsafe_allow_html=True) if not os.path.exists('model_results.pkl'): st.info("ℹ️ 当前没有可用模型。请先进行模型训练以生成分析报告。") else: results = joblib.load('model_results.pkl') preprocessor_params = joblib.load('preprocessor_params.pkl') feature_cols = preprocessor_params['feature_cols'] model_choice = st.selectbox( "选择要分析的模型", ("逻辑回归", "决策树", "随机森林") ) model_key = model_choice.lower().replace(" ", "_") # 显示模型基本信息 model_info = results[model_choice] st.markdown(f""" <div class="card"> <h3>{model_choice}</h3> <p><strong>AUC得分:</strong> {model_info['auc']:.4f}</p> <p><strong>准确率:</strong> {model_info['accuracy']:.2%}</p> </div> """, unsafe_allow_html=True) # 显示参数详情 with st.expander("模型参数详情", expanded=False): params = model_info['best_params'] param_table = pd.DataFrame({ '参数': [str(param.name) for param in params.keys()], '值': [str(value) for value in params.values()] }) st.table(param_table) # 特征重要性分析 if model_key in ['decision_tree', 'random_forest']: feature_importances = model_info['feature_importances'] importance_df = pd.DataFrame({ '特征': feature_cols, '重要性': feature_importances }).sort_values('重要性', ascending=False) st.subheader("特征重要性分析") top_features = importance_df.head(10) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x='重要性', y='特征', data=top_features, ax=ax) ax.set_title('Top 10 重要特征') st.pyplot(fig) fig, ax = plt.subplots(figsize=(10, 6)) sns.histplot(importance_df['重要性'], bins=20, ax=ax) ax.set_title('特征重要性分布') st.pyplot(fig) st.write("特征重要性详细数据:") st.dataframe(importance_df.style.background_gradient(subset=['重要性'], cmap='viridis')) # 模型比较 st.subheader("与其他模型的对比") model_performance = pd.DataFrame({ '模型': ['逻辑回归', '决策树', '随机森林'], '准确率': [results['逻辑回归']['accuracy'], results['决策树']['accuracy'], results['随机森林']['accuracy']], 'AUC': [results['逻辑回归']['auc'], results['决策树']['auc'], results['随机森林']['auc']] }).sort_values('AUC', ascending=False) fig, ax = plt.subplots(figsize=(10, 6)) model_performance.set_index('模型')[['AUC', '准确率']].plot(kind='bar', ax=ax) ax.set_title('模型性能对比') ax.set_ylabel('评分') plt.xticks(rotation=0) st.pyplot(fig) st.table(model_performance.style.format({ '准确率': '{:.2%}', 'AUC': '{:.4f}' }).apply(lambda x: ['background: lightgreen' if x.name == model_performance.index[0] else '' for _ in x])) # 页脚 st.markdown("—") st.markdown(""" <div style="text-align: center; color: #7f8c8d; font-size: 0.9rem; padding: 1rem;"> © 2023 单宽转融用户预测系统 | 2231030273 基于Streamlit和Spark开发 </div> """, unsafe_allow_html=True) 执行上述代码出现如下报错,给出修改后的完整代码 数据处理错误: Mismatched dtypes found in pd.read_csv/pd.read_table. +---------------------+--------+----------+ | Column | Found | Expected | +---------------------+--------+----------+ | MAX_PRICE_COMPANY | object | float64 | | MAX_PRICE_MODEL | object | float64 | | MAX_PRICE_TERM_TYPE | object | float64 | | MOBLE_4G_CNT_LV | object | float64 | | MOBLE_CNT_LV | object | float64 | | OWE_AMT_LV | object | float64 | | OWE_CNT_LV | object | float64 | | PROM_INTEG_ID | object | float64 | | TOUSU_CNT_LV | object | float64 | +---------------------+--------+----------+ The following columns also raised exceptions on conversion: MAX_PRICE_COMPANY ValueError("could not convert string to float: '华为'") MAX_PRICE_MODEL ValueError("could not convert string to float: '华为 Che1-CL10'") MAX_PRICE_TERM_TYPE ValueError("could not convert string to float: '4G'") MOBLE_4G_CNT_LV ValueError("could not convert string to float: 'a1'") MOBLE_CNT_LV ValueError("could not convert string to float: 'a1'") OWE_AMT_LV ValueError("could not convert string to float: 'e100+'") OWE_CNT_LV ValueError("could not convert string to float: 'a1'") PROM_INTEG_ID ValueError("could not convert string to float: 'DOC_1-A9Z9Y4W'") TOUSU_CNT_LV ValueError("could not convert string to float: 'a1'") Usually this is due to dask's dtype inference failing, and may be fixed by specifying dtypes manually by adding: dtype={'MAX_PRICE_COMPANY': 'object', 'MAX_PRICE_MODEL': 'object', 'MAX_PRICE_TERM_TYPE': 'object', 'MOBLE_4G_CNT_LV': 'object', 'MOBLE_CNT_LV': 'object', 'OWE_AMT_LV': 'object', 'OWE_CNT_LV': 'object', 'PROM_INTEG_ID': 'object', 'TOUSU_CNT_LV': 'object'} to the call to read_csv/read_table. ValueError: Mismatched dtypes found in `pd.read_csv`/`pd.read_table`. +---------------------+--------+----------+ | Column | Found | Expected | +---------------------+--------+----------+ | MAX_PRICE_COMPANY | object | float64 | | MAX_PRICE_MODEL | object | float64 | | MAX_PRICE_TERM_TYPE | object | float64 | | MOBLE_4G_CNT_LV | object | float64 | | MOBLE_CNT_LV | object | float64 | | OWE_AMT_LV | object | float64 | | OWE_CNT_LV | object | float64 | | PROM_INTEG_ID | object | float64 | | TOUSU_CNT_LV | object | float64 | +---------------------+--------+----------+ The following columns also raised exceptions on conversion: - MAX_PRICE_COMPANY ValueError("could not convert string to float: '华为'") - MAX_PRICE_MODEL ValueError("could not convert string to float: '华为 Che1-CL10'") - MAX_PRICE_TERM_TYPE ValueError("could not convert string to float: '4G'") - MOBLE_4G_CNT_LV ValueError("could not convert string to float: 'a1'") - MOBLE_CNT_LV ValueError("could not convert string to float: 'a1'") - OWE_AMT_LV ValueError("could not convert string to float: 'e100+'") - OWE_CNT_LV ValueError("could not convert string to float: 'a1'") - PROM_INTEG_ID ValueError("could not convert string to float: 'DOC_1-A9Z9Y4W'") - TOUSU_CNT_LV ValueError("could not convert string to float: 'a1'") Usually this is due to dask's dtype inference failing, and *may* be fixed by specifying dtypes manually by adding: dtype={'MAX_PRICE_COMPANY': 'object', 'MAX_PRICE_MODEL': 'object', 'MAX_PRICE_TERM_TYPE': 'object', 'MOBLE_4G_CNT_LV': 'object', 'MOBLE_CNT_LV': 'object', 'OWE_AMT_LV': 'object', 'OWE_CNT_LV': 'object', 'PROM_INTEG_ID': 'object', 'TOUSU_CNT_LV': 'object'} to the call to `read_csv`/`read_table`. Traceback: File "D:\2035946879\Single_breadth_to_melt.py", line 351, in <module> preview_data = raw_ddf.head(1000) ^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\Lib\site-packages\dask\dataframe\dask_expr\_collection.py", line 692, in head out = out.compute() ^^^^^^^^^^^^^ File "D:\Anaconda\Lib\site-packages\dask\base.py", line 373, in compute (result,) = compute(self, traverse=False, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\Lib\site-packages\dask\base.py", line 681, in compute results = schedule(expr, keys, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Anaconda\Lib\site-packages\dask\dataframe\io\csv.py", line 351, in _read_csv df = pandas_read_text( ^^^^^^^^^^^^^^^^^ File "D:\Anaconda\Lib\site-packages\dask\dataframe\io\csv.py", line 79, in pandas_read_text coerce_dtypes(df, dtypes) File "D:\Anaconda\Lib\site-packages\dask\dataframe\io\csv.py", line 180, in coerce_dtypes raise ValueError(msg)
07-01
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值