SDK 实作VS2010复制中文乱码修复

本文介绍了一种解决Visual Studio 2010中复制包含中文字符的代码到Office应用时出现乱码的方法。通过比对CF_UNICODETEXT和RTF格式的数据,去除乱码。
SDK 实作VS2010复制中文乱码修复
2010年11月15日
  当复制VS2010中带有中文字符的代码到Office(Word, Excel, PowerPoint, Outlook)时,
  在中文字符后面会被添加一到三个乱码。比如复制"中文字符",粘贴到word就会变成(中D文?字???符¤?)。
  通过黑暗执行绪的一篇文章提示,截取剪贴板中RTF(富文本格式)的数据流,并作出修复。该作者使用了 .NET中的正则表达式类RegEx来达到修复目的。方法调用很简单,感兴趣的可以搜索一下作者的博客空间。
  我这里给出另一个解决方法:同时截取CF_UNICODETEXT和RTF两种剪贴板数据,以CF_UNICODETEXT中的正确数据为参照,对比剔除RTF中的乱码。
  写这份代码走了不少弯路,主要是一开始对RTF格式不熟悉,其中的中文接ASCII码处理着实让我差点抓破了头皮。
  先给出乱码修复截图:
  
  程序添加了全局热键 CTRL+Q 和 监测状态。右下角则是一个动态文字Logo,鼠标移上去就会出现Logo,
  移开则改为快捷键说明。编译好的文件这里下载VS2010CopyModify.rar。
  如果需要所有源文件,可以在我的资源空间下载VS2010CopyModify源文件。
  下面贴出程序的核心算法:
  函数参数说明:
  PTSTR pText (RTF数据首地址指针,切勿传递剪贴板内存,必须是程序拷贝剪贴板的。)
  UINT iText (RTF数据大小。单位字节)
  LPWSTR pTextU (CF_UNICODETEXT数据首地址指针,同上,不可为剪贴板内存。)
  UINT iTextU (CF_UNICODETEXT数据大小。单位字符)
  返回值类型 UINT (修复完后RTF数据的大小。单位字节) /*-------------------------------
  Repair.cpp - 实作乱码修正处理
  -------------------------------*/
  #include
  #include
  UINTClobalRepair (PTSTRpText,UINTiText,LPWSTRpTextU,UINTiTextU)
  {
  constPTSTR tZ="\\uinput2\\u",
  tA="\\cf0 \\par",
  tP="\\par";
  TCHAR AnsiT[11];
  PTSTR pTextS =pText,
  pTextW =NULL,
  pAnsiT =AnsiT;
  PTCHAR pTextK =NULL;
  UINT i,iU,iC=0,iR=0,
  UTRange=10;
  BOOL bAnsi=FALSE;
  LPWSTR pTextUW=pTextU;
  longint iM;
  while(TRUE)
  {
  // 查找\uinput2\u
  pTextS=strstr(pTextS,tZ);
  if(pTextS==NULL)
  break;
  // 指向Unicode编码的首字节
  pTextS=&pTextS[UTRange];
  // 获取Unicode编码的十六进制值
  iM=strtol(pTextS,&pTextK,10);
  // 修正负数补码的问题
  iM=iM&0xFFFF;
  pTextS=pTextK;
  pTextS=&pTextS[1];
  pTextS[0]=' ';
  pTextS=&pTextS[1];
  // 在Unicode数据中对焦中文字符
  for (iU=0; iU0x80)
  {
  pTextW=strstr(pTextS,tZ);
  iC=pTextW-pTextS;
  i =pTextS-pText;
  iR=i+iC;
  for (i=0; iR=0x20)
  {
  for (i=0; i=0x20)); iR++)
  {
  if (pTextUW[iR]==0x5C || pTextUW[iR]==0x7B || pTextUW[iR]==0x7D)
  {
  pAnsiT[0]='\\';
  pAnsiT =&pAnsiT[1];
  pAnsiT[0]=pTextUW[iR];
  pAnsiT =&pAnsiT[1];
  }
  else
  {
  pAnsiT[0]=pTextUW[iR];
  pAnsiT =&pAnsiT[1];
  }
  }
  if (strlen(AnsiT) <=3)
  AnsiT[iR]='\\';
  pTextW=pTextS;
  pTextW=strstr(pTextS,AnsiT);
  if(pTextW==NULL)
  {
  bAnsi=FALSE;
  pTextW=pTextS;
  for (iC=0; TRUE; iC++)
  {
  if ((pTextW[iC]=='\\'&&pTextW[iC-1]!='\\') &&
  (pTextW[iC+1]=='c' || pTextW[iC+1]=='p') &&
  (pTextW[iC+2]=='f' || pTextW[iC+2]=='a') &&
  (pTextW[iC+3]=='0' || pTextW[iC+3]=='r'))
  {
  pTextW=&pTextW[iC];
  break;
  }
  }
  while(TRUE)
  {
  if (pTextW[0]==AnsiT[0])
  {
  if (AnsiT[0]=='\\')
  {
  if (pTextW[1]==AnsiT[1])
  break;
  }
  else
  {
  if (AnsiT[1]!=NULL&&pTextW[1]==AnsiT[1])
  break;
  else
  {
  if(pTextW[1]=='\\'&&
  (pTextW[2]=='c'||pTextW[2]=='p') &&
  (pTextW[3]=='f'||pTextW[3]=='a'))
  {
  bAnsi=TRUE;
  break;
  }
  }
  }
  }
  pTextW=&pTextW[-1];
  }
  if (AnsiT[2]!=NULL&&bAnsi!=TRUE)
  {
  while(TRUE)
  {
  if (pTextW[0]==AnsiT[0]&&pTextW[1]==AnsiT[1]&&
  pTextW[2]==AnsiT[2])
  {
  if (AnsiT[2]=='\\')
  {
  if (pTextW[3]==AnsiT[3])
  break;
  }
  else
  {
  if (AnsiT[3]!=NULL&&pTextW[3]==AnsiT[3])
  break;
  else
  {
  if (pTextW[3]=='\\'&&
  (pTextW[4]=='c' || pTextW[4]=='p') &&
  (pTextW[5]=='f' || pTextW[5]=='a'))
  {
  bAnsi=TRUE;
  break;
  }
  }
  }
  }
  pTextW=&pTextW[-1];
  }
  }
  if (AnsiT[3]!=NULL&&bAnsi!=TRUE)
  {
  while(TRUE)
  {
  if (pTextW[0]==AnsiT[0]&&pTextW[1]==AnsiT[1]&&
  pTextW[2]==AnsiT[2]&&pTextW[3]==AnsiT[3])
  {
  if (AnsiT[3]=='\\')
  {
  if (pTextW[4]==AnsiT[4])
  break;
  }
  else
  {
  if (AnsiT[4]!=NULL&&pTextW[4]==AnsiT[4])
  break;
  else
  {
  if (pTextW[4]=='\\'&&
  (pTextW[5]=='c' || pTextW[5]=='p') &&
  (pTextW[6]=='f' || pTextW[6]=='a'))
  {
  bAnsi=TRUE;
  break;
  }
  }
  }
  }
  pTextW=&pTextW[-1];
  }
  }
  if (AnsiT[4]!=NULL&&bAnsi!=TRUE)
  {
  while(TRUE)
  {
  if (pTextW[0]==AnsiT[0]&&pTextW[1]==AnsiT[1]&&
  pTextW[2]==AnsiT[2]&&pTextW[3]==AnsiT[3]&&
  pTextW[4]==AnsiT[4])
  {
  if (AnsiT[4]=='\\')
  {
  if (pTextW[5]==AnsiT[5])
  break;
  }
  else
  {
  if (AnsiT[5]!=NULL&&pTextW[5]==AnsiT[5])
  break;
  else
  {
  if (pTextW[5]=='\\'&&
  (pTextW[6]=='c' || pTextW[6]=='p') &&
  (pTextW[7]=='f' || pTextW[7]=='a'))
  {
  bAnsi=TRUE;
  break;
  }
  }
  }
  }
  pTextW=&pTextW[-1];
  }
  }
  if (AnsiT[5]!=NULL&&bAnsi!=TRUE)
  {
  while(TRUE)
  {
  if (pTextW[0]==AnsiT[0]&&pTextW[1]==AnsiT[1]&&
  pTextW[2]==AnsiT[2]&&pTextW[3]==AnsiT[3]&&
  pTextW[4]==AnsiT[4]&&pTextW[5]==AnsiT[5])
  {
  if (AnsiT[5]=='\\')
  {
  if (pTextW[6]==AnsiT[6])
  break;
  }
  else
  {
  if (AnsiT[6]!=NULL&&pTextW[6]==AnsiT[6])
  break;
  else
  {
  if (pTextW[6]=='\\'&&
  (pTextW[7]=='c' || pTextW[7]=='p') &&
  (pTextW[8]=='f' || pTextW[8]=='a'))
  {
  bAnsi=TRUE;
  break;
  }
  }
  }
  }
  pTextW=&pTextW[-1];
  }
  }
  if (AnsiT[6]!=NULL&&bAnsi!=TRUE)
  {
  while(TRUE)
  {
  if (pTextW[0]==AnsiT[0]&&pTextW[1]==AnsiT[1]&&
  pTextW[2]==AnsiT[2]&&pTextW[3]==AnsiT[3]&&
  pTextW[4]==AnsiT[4]&&pTextW[5]==AnsiT[5]&&
  pTextW[6]==AnsiT[6] )
  {
  if (AnsiT[6]=='\\')
  {
  if (pTextW[7]==AnsiT[7])
  break;
  }
  else
  {
  if (AnsiT[7]!=NULL&&pTextW[7]==AnsiT[7])
  break;
  else
  {
  if (pTextW[7]=='\\'&&
  (pTextW[8]=='c' || pTextW[8]=='p') &&
  (pTextW[9]=='f' || pTextW[9]=='a'))
  {
  bAnsi=TRUE;
  break;
  }
  }
  }
  }
  pTextW=&pTextW[-1];
  }
  }
  if (AnsiT[7]!=NULL&&bAnsi!=TRUE)
  {
  while(TRUE)
  {
  if (pTextW[0]==AnsiT[0]&&pTextW[1]==AnsiT[1]&&
  pTextW[2]==AnsiT[2]&&pTextW[3]==AnsiT[3]&&
  pTextW[4]==AnsiT[4]&&pTextW[5]==AnsiT[5]&&
  pTextW[6]==AnsiT[6]&&pTextW[7]==AnsiT[7])
  {
  if (AnsiT[7]=='\\')
  {
  if (pTextW[8]==AnsiT[8])
  break;
  }
  else
  {
  if (AnsiT[8]!=NULL&&pTextW[8]==AnsiT[8])
  break;
  else
  {
  if (pTextW[8]=='\\'&&
  (pTextW[9]=='c' || pTextW[9]=='p') &&
  (pTextW[10]=='f' || pTextW[10]=='a'))
  {
  bAnsi=TRUE;
  break;
  }
  }
  }
  }
  pTextW=&pTextW[-1];
  }
  }
  }
  iC=pTextW-pTextS;
  i =pTextS-pText;
  iR=i+iC;
  for (i=0; iR<=iText; i++,iR++)
  pTextS[i]=pTextW[i];
  iText-=iC;
  continue;
  }
  }
  returniText;
  }
【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制现有限时间内的共识(Matlab代码现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制现有限时间内的共识,并提供了相应的Matlab代码现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行践操,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值