Socket

#include <sys/types.h> #include <sys/socket.h> int socket(int domain, int type, int protocol);

The socket system call returns a descriptor that is in many ways similar to a low-level file descriptor. When the socket has been connected to another end-point socket, you can use the read and write system calls with the descriptor to send and receive data on the socket. The close system call is used to end a socket connection.

Socket Addresses

Each socket domain requires its own address format. For an AF_UNIX socket, the address is described by a structure, sockaddr_un , defined in the sys/un.h include file.

struct sockaddr_un{ sa_family_t sun_family;/*AF_UNIX*/ char sun_path[]; /*pathname*/ };

In the AF_INET domain, the address is specified using a structure called sockaddr_in , defined in netinet/in.h , which contains at least these members:

struct sockaddr_in{ short int sin_family; /*AF_INET*/ unsigned short int sin_port; /*port number*/ struct in_addr sin_addr; /*Internet address */ };

The IP address structure, in_addr , is defined as follows:

struct in_addr{ unsigned long int s_addr; };

The for bytes of an IP address constitute a single 32-bit value; An AF_INET socket is fully described by its domain, IP address, and port number. From an application's point of view, all sockets act like file descriptors and are addressed by a unique integer value.

Naming a socket

#include <sys/socket.h> int bind(int socket, const struct sockaddr *address, size_t address_len);

Creating a socket queue

#include <sys/socket.h> int listen(int socket, int backlog);

Accepting connections:

#include <sys/socket.h> int accept(int socket, struct sockaddr *address, size_t *address_len);

The accept system call returns when a client program attempts to connect to the socket specified by the parameter socket . The client is the first pending connection from that socket's queue. The accept function creates a new socket to communicate with the client and returns its descriptor. The new socket will have the same type as the server listen socket.

The socket must have previously been named by a call to bind and had a connection queue allocated by listen . The address of calling client will be placed in the sockaddr structure pointed by address . A null pointer may be used here if the client address isn't of interest.

The address_len parameter specifies the length of the client structure.Before calling accept , addresss_len must be set to the expected address length. On return, address_len will be set to the actural length of the calling client's address structure.


Requesting connections :

#include <sys/socket.h> int connect(int socket, const struct sockaddr *addresss, size_t address_len);

Closing a socket:

You can just terminate a socket connection at the server and client by calling close , just as you would for low-level file descriptors.

例子:

client.c:

#include <sys/types.h> #include <sys/socket.h> #include <unistd.h> #include <stdlib.h> #include <stdio.h> #include <netinet/in.h> #include <arpa/inet.h> int main(){ int sockfd; int len; struct sockaddr_in address; int result; char ch = 'i'; sockfd = socket(AF_INET, SOCK_STREAM, 0); address.sin_family = AF_INET; address.sin_addr.s_addr = inet_addr("127.0.0.1"); address.sin_port = htons(9527); len = sizeof(address); result = connect(sockfd, (struct sockaddr *)&address, len); if (result == -1){ perror("Oops, client2:"); exit(1); } write(sockfd, &ch, 1); read(sockfd, &ch, 1); printf("Char from server: %c./n", ch); close(sockfd); exit(EXIT_SUCCESS); }

server.c

#include <sys/types.h> #include <sys/socket.h> #include <stdlib.h> #include <unistd.h> #include <stdio.h> #include <netinet/in.h> #include <arpa/inet.h> int main(){ int server_sockfd, client_sockfd; int server_len, client_len; struct sockaddr_in server_address; struct sockaddr_in client_address; server_sockfd = socket(AF_INET, SOCK_STREAM, 0); server_address.sin_family = AF_INET; server_address.sin_addr.s_addr = htonl(INADDR_ANY); server_address.sin_port = htons(9527); server_len = sizeof(server_address); bind(server_sockfd, (struct sockaddr *)&server_address, server_len); listen(server_sockfd, 5); while(1){ char ch; printf("server waiting/n"); client_len = sizeof(client_address); client_sockfd = accept(server_sockfd, (struct sockaddr *)&client_address, &client_len); read(client_sockfd, &ch, 1); ch++; write(client_sockfd, &ch, 1); close(client_sockfd); } }

The function, inet_addr, convert the text representation of an IP address into a form suitable for socket addressing.

Host and network byte ordering:

Client and server programs must convert their internal integer representation to the network ordering before transmission.

#include <netient/in.h> unsigned long int htonl(unsigned long int hostlong); unsigned short int htons(unsigned short int hostshort); unsigned long int ntohl(unsigned long int netlong); unsigned short int ntohs(unsigned short int netshort);

hronl : host to network long

So in the server.c:

server_address.sin_addr.s_addr = htonl(INADDR_ANY); server_address.sin_port = htons(9527);

and in the client.c:

address.sin_port = htons(9527);

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值