Tomcat内存溢出问题

(收集)Tomcat运行过程中,经常出现内存溢出问题,整理如下:

 

1、首先是:java.lang.OutOfMemoryError: Java heap space

解释:

Heap size 设置

JVM堆的设置是指java程序运行过程中JVM可以调配使用的内存空间的设置.JVM在启动的时候会自动设置Heap size的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4。可以利用JVM提供的-Xmn -Xms -Xmx等选项可进行设置。Heap size 的大小是Young Generation 和Tenured Generaion 之和。
提示:在JVM中如果98%的时间是用于GC且可用的Heap size 不足2%的时候将抛出此异常信息。
提示:Heap Size 最大不要超过可用物理内存的80%,一般的要将-Xms和-Xmx选项设置为相同,而-Xmn为1/4的-Xmx值。

解决方法:

手动设置Heap size
修改TOMCAT_HOME/bin/catalina.bat,在“echo "Using CATALINA_BASE: $CATALINA_BASE"”上面加入以下行:
Java代码
set JAVA_OPTS=%JAVA_OPTS% -server -Xms800m -Xmx800m -XX:MaxNewSize=256m  

set JAVA_OPTS=%JAVA_OPTS% -server -Xms800m -Xmx800m -XX:MaxNewSize=256m

或修改catalina.sh
在“echo "Using CATALINA_BASE: $CATALINA_BASE"”上面加入以下行:
JAVA_OPTS="$JAVA_OPTS -server -Xms800m -Xmx800m -XX:MaxNewSize=256m"

2、其次是:java.lang.OutOfMemoryError: PermGen space

原因:

PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,这块内存主要是被JVM存放Class和Meta信息的,Class在被Loader时就会被放到PermGen space中,它和存放类实例(Instance)的Heap区域不同,GC(Garbage Collection)不会在主程序运行期对PermGen space进行清理,所以如果你的应用中有很CLASS的话,就很可能出现PermGen space错误,这种错误常见在web服务器对JSP进行pre compile的时候。如果你的WEB APP下都用了大量的第三方jar, 其大小超过了jvm默认的大小(4M)那么就会产生此错误信息了。

解决方法:

1. 手动设置MaxPermSize大小
修改TOMCAT_HOME/bin/catalina.bat(Linux下为catalina.sh),在Java代码
“echo "Using CATALINA_BASE: $CATALINA_BASE"”上面加入以下行:   
set JAVA_OPTS=%JAVA_OPTS% -server -XX:PermSize=128M -XX:MaxPermSize=512m  

“echo "Using CATALINA_BASE: $CATALINA_BASE"”上面加入以下行:
set JAVA_OPTS=%JAVA_OPTS% -server -XX:PermSize=128M -XX:MaxPermSize=512m

catalina.sh下为:
Java代码
JAVA_OPTS="$JAVA_OPTS -server -XX:PermSize=128M -XX:MaxPermSize=512m" 

JAVA_OPTS="$JAVA_OPTS -server -XX:PermSize=128M -XX:MaxPermSize=512m"


另外看到了另外一个帖子,觉得挺好,摘抄如下:
分析java.lang.OutOfMemoryError: PermGen space

发现很多人把问题归因于: spring,hibernate,tomcat,因为他们动态产生类,导致JVM中的permanent heap溢出 。然后解决方法众说纷纭,有人说升级 tomcat版本到最新甚至干脆不用tomcat。还有人怀疑spring的问题,在spring论坛上讨论很激烈,因为spring在AOP时使用CBLIB会动态产生很多类。

但问题是为什么这些王牌的开源会出现同一个问题呢,那么是不是更基础的原因呢?tomcat在Q&A很隐晦的回答了这一点,我们知道这个问题,但这个问题是由一个更基础的问题产生。

于是有人对更基础的JVM做了检查,发现了问题的关键。原来SUN 的JVM把内存分了不同的区,其中一个就是permenter区用来存放用得非常多的类和类描述。本来SUN设计的时候认为这个区域在JVM启动的时候就固定了,但他没有想到现在动态会用得这么广泛。而且这个区域有特殊的垃圾收回机制,现在的问题是动态加载类到这个区域后,gc根本没办法回收!


对于以上两个问题,我的处理是:

在catalina.bat的第一行增加:
Java代码
set JAVA_OPTS=-Xms64m -Xmx256m -XX:PermSize=128M -XX:MaxNewSize=256m -XX:MaxPermSize=256m  

set JAVA_OPTS=-Xms64m -Xmx256m -XX:PermSize=128M -XX:MaxNewSize=256m -XX:MaxPermSize=256m

在catalina.sh的第一行增加:
Java代码
JAVA_OPTS=
-Xms64m
-Xmx256m
-XX:PermSize=128M
-XX:MaxNewSize=256m
-XX:MaxPermSize=256m

标题基于SpringBoot+Vue的学生交流互助平台研究AI更换标题第1章引言介绍学生交流互助平台的研究背景、意义、现状、方法与创新点。1.1研究背景与意义分析学生交流互助平台在当前教育环境下的需求及其重要性。1.2国内外研究现状综述国内外在学生交流互助平台方面的研究进展与实践应用。1.3研究方法与创新点概述本研究采用的方法论、技术路线及预期的创新成果。第2章相关理论阐述SpringBoot与Vue框架的理论基础及在学生交流互助平台中的应用。2.1SpringBoot框架概述介绍SpringBoot框架的核心思想、特点及优势。2.2Vue框架概述阐述Vue框架的基本原理、组件化开发思想及与前端的交互机制。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue在学生交流互助平台中的整合方式及优势。第3章平台需求分析深入分析学生交流互助平台的功能需求、非功能需求及用户体验要求。3.1功能需求分析详细阐述平台的各项功能需求,如用户管理、信息交流、互助学习等。3.2非功能需求分析对平台的性能、安全性、可扩展性等非功能需求进行分析。3.3用户体验要求从用户角度出发,提出平台在易用性、美观性等方面的要求。第4章平台设计与实现具体描述学生交流互助平台的架构设计、功能实现及前后端交互细节。4.1平台架构设计给出平台的整体架构设计,包括前后端分离、微服务架构等思想的应用。4.2功能模块实现详细阐述各个功能模块的实现过程,如用户登录注册、信息发布与查看、在线交流等。4.3前后端交互细节介绍前后端数据交互的方式、接口设计及数据传输过程中的安全问题。第5章平台测试与优化对平台进行全面的测试,发现并解决潜在问题,同时进行优化以提高性能。5.1测试环境与方案介绍测试环境的搭建及所采用的测试方案,包括单元测试、集成测试等。5.2测试结果分析对测试结果进行详细分析,找出问题的根源并
内容概要:本文详细介绍了一个基于灰狼优化算法(GWO)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量多步时间序列预测项目。该项目旨在解决传统时序预测方法难以捕捉非线性、复杂时序依赖关系的问题,通过融合CNN的空间特征提取、BiLSTM的时序建模能力及注意力机制的动态权重调节能力,实现对多变量多步时间序列的精准预测。项目不仅涵盖了数据预处理、模型构建与训练、性能评估,还包括了GUI界面的设计与实现。此外,文章还讨论了模型的部署、应用领域及其未来改进方向。 适合人群:具备一定编程基础,特别是对深度学习、时间序列预测及优化算法有一定了解的研发人员和数据科学家。 使用场景及目标:①用于智能电网负荷预测、金融市场多资产价格预测、环境气象多参数预报、智能制造设备状态监测与预测维护、交通流量预测与智慧交通管理、医疗健康多指标预测等领域;②提升多变量多步时间序列预测精度,优化资源调度和风险管控;③实现自动化超参数优化,降低人工调参成本,提高模型训练效率;④增强模型对复杂时序数据特征的学习能力,促进智能决策支持应用。 阅读建议:此资源不仅提供了详细的代码实现和模型架构解析,还深入探讨了模型优化和实际应用中的挑战与解决方案。因此,在学习过程中,建议结合理论与实践,逐步理解各个模块的功能和实现细节,并尝试在自己的项目中应用这些技术和方法。同时,注意数据预处理的重要性,合理设置模型参数与网络结构,控制多步预测误差传播,防范过拟合,规划计算资源与训练时间,关注模型的可解释性和透明度,以及持续更新与迭代模型,以适应数据分布的变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值