在QtCreator上使用版本控制系统Git(二)

本文详细介绍如何在QtCreator中使用版本控制系统Git的分支功能,包括创建、切换分支及比较不同分支间的差异。
<style type="text/css"> <!-- @page {margin:2cm} pre.cjk {font-family:"DejaVu Sans Condensed",monospace} p {margin-bottom:0.21cm} --> </style>

QtCreator

使用版本控制系统Git(二)

提到版本控制,就不得不提到它的一个重要的功能:分支功能。假如我们制作项目需要一些差异化的版本(例如Windows7家庭版和Windows7旗舰版等),但是它们都是拥有相同的部分,仅仅有一些部分是不同的,那么我们完全可以先制作相同的底层部分,然后创建多个分支,分别制作,这样可以拥有两个版本进行评估,最终选择一个更好的版本,也可以两个版本分别发售。在这一点上,git又帮了我们大忙,下面我就介绍在QtCreator上是怎样使用git的分支功能的。有不对的地方请尽管提出来,我会改正的。

我目前的开发环境:Ubuntu11.10QtCreator2.41Qt4.8

首先打开QtCreator,点击“工具➡Git➡Log”来查看我们的Log。如下图:


我们看到第一行中间的括号(HEAD,master),它表示了当前head指针指向的是这个版本,并且这个版本所在的分支是master。怎样查看分支呢?很简单,点击“工具➡Git➡Branches...”就行了。


这里有一个master分支,正是我们以前编辑的分支。接下来我们创建另外一个分支,点击“添加”,创建一个名为Experimental的分支吧(不要选“跟踪本地分支master”)。然后我们先点击Experimental分支,然后点击checkout来切换到Experimental分支。关闭对话框,接下来的动作就在Experimental分支上进行了。

我们在main.c上进行一点修改,去掉HelloWorld显示,改为显示三角形的面积。

#include <stdio.h>
#include <math.h>
 
float AreaOfTriangle( float a, float b, float c )
{
    float p = ( a + b + c ) / 2.0f;
    return sqrt( p * ( p - a ) * ( p - b ) * ( p - c ) );
}
 
int main(void)
{
    printf( "Hello git!\n" );
    printf( "The area of a triangle is: %f\n",
            AreaOfTriangle( 6.0f, 6.0f, 6.0f ) );
    return 0;
}

其中蓝色的部分是我们更改过的代码,编译运行后我们可以提交这段代码。我们就将这段代码的版本定义为1.2a,提交界面如下图所示:


提交完了后查看版本信息:

* a4cbfc4  (HEAD, Experimental) 蒋彩阳 Ver. 1.2a 2012-10-27 10:28:11 +0800
* a03507a  (master) 蒋彩阳 Ver. 1.1 2012-10-24 08:56:34 +0800
* 2552bae  蒋彩阳 Ver. 1.0 2012-10-20 11:27:13 +0800

此时HEAD指针指向了Experimental分支里面的Ver.1.2a版本了。

这个版本也算是成功的了,于是我将精力转向了另一个版本,我想让它实现对圆锥体积的计算。首先我们要将HEAD指针回调。点击“工具➡Git➡Branches...”,点击master分支进行checkout,切换到master分支,我们看到我们的main.c回到了原来的状态。查看一下Log看是否正确地切换?接下来我们再对main.c进行修改,让它能够计算圆锥的体积:

#include <stdio.h>
 
float VolumeOfTaper( float radius, float height )
{
    return 3.1416f * radius * radius * height / 3.0f;
}
 
int main(void)
{
    printf( "Hello git!\n" );
    printf( "The volume of taper is %f\n",
            VolumeOfTaper( 10.0f, 5.0f ) );
    return 0;
}

提交一下,这次将其的版本命名为Ver.1.2b,这样我们项目的两个版本都做好了。如果我们想查看Experimental分支下的当前版本Ver.1.2a的情况,仍然可以使用“工具➡Git➡Branches...”并对Experimental进行checkout就可以了。

嗯,我想知道这两个版本究竟有什么不一样,要来回切换分支并且花很长的时间来找不同吗?哪有这么麻烦,很简单,使用“工具➡Git➡Branches...”,选择一个分支,这里是Experimental,点击diff,来看看和已经checkout了的master分支究竟有什么不同。下面是截图:

diff --git a/main.c b/main.c
index c450bd0..e9b2f1f 100644
--- a/main.c
+++ b/main.c
@@ -1,17 +1,15 @@
 #include <stdio.h>
-#include <math.h>
 
-float AreaOfTriangle( float a, float b, float c )
+float VolumeOfTaper( float radius, float height )
 {
-    float p = ( a + b + c ) / 2.0f;
-    return sqrt( p * ( p - a ) * ( p - b ) * ( p - c ) );
+    return 3.1416f * radius * radius * height / 3.0f;
 }
 
 int main(void)
 {
     printf( "Hello git!\n" );
-    printf( "The area of a triangle is: %f\n",
-            AreaOfTriangle( 6.0f, 6.0f, 6.0f ) );
+    printf( "The volume of taper is %f\n",
+            VolumeOfTaper( 10.0f, 5.0f ) );
     return 0;
 }

这样看不就一清二楚了嘛。

此外还可以将某个分支删除(在“工具➡Git➡Branches...”中),为某个分支进行重命名,以及更加强大的gitk工具,这里就不再向大家介绍了。只要大家入门了,这篇教程就达到目的了。还希望大家一起努力,利用强大的编程工具制作出更加强大的作品来。


<think>我们正在讨论Gemini GenAI SDK中的聊天历史功能。由于这是一个特定的技术问题,我将根据一般性的知识和常见的SDK设计模式来回答,因为Gemini GenAI SDK的具体实现细节可能随时间变化,且我没有实时的访问权限。但我会尽量提供通用且可靠的指导。 聊天历史功能通常是指在一个持续对话中,模型能够记住之前的对话内容,从而在后续的回复中保持上下文。在Gemini GenAI SDK中,实现聊天历史管理通常涉及以下几个关键点: 1. **消息传递结构**:通常,每次调用模型时,我们需要传递整个对话历史(包括用户的消息和模型的回复)作为上下文。这样模型才能基于整个对话历史生成回复。 2. **消息格式**:每条消息通常包含角色(如"user"或"model")和内容(文本)。例如: ```json [ {"role": "user", "content": "你好"}, {"role": "model", "content": "你好!有什么可以帮助你的吗?"}, {"role": "user", "content": "告诉我Gemini是什么?"} ] ``` 3. **管理对话历史**:开发者需要维护一个消息列表,每次用户发送新消息时,将新消息添加到历史列表中,然后调用模型生成回复,再将模型的回复也添加到历史列表中。注意,历史记录的长度不能超过模型的最大上下文长度(通常有token限制)。 4. **截断历史记录**:当对话历史很长时,需要截断以避免超过token限制。常见的策略是保留最近的几条消息,或者删除中间的一些消息但保留开头(如系统指令)和最近的对话。 5. **Gemini SDK中的具体实现**:在Gemini SDK中,可能会有一个`ChatSession`类来管理对话状态。例如: ```python import google.generativeai as genai genai.configure(api_key="YOUR_API_KEY") model = genai.GenerativeModel(&#39;gemini-pro&#39;) chat = model.start_chat(history=[]) # 初始历史为空 response = chat.send_message("你好") print(response.text) # 模型的回复 # 继续对话 response = chat.send_message("告诉我Gemini是什么?") print(response.text) # 查看历史 for message in chat.history: print(message.role, message.parts[0].text) ``` 在上面的例子中,`chat`对象会自动维护历史记录。每次调用`send_message`后,用户的消息和模型的回复都会被添加到`chat.history`中。 6. **常见问题**: - **上下文丢失**:如果发现模型没有记住之前的对话,请检查是否在每次发送消息时都使用了同一个`ChatSession`实例,并且历史记录是否正确传递。 - **token限制**:当历史记录很长时,可能会超过模型的最大token限制(例如,gemini-pro模型的最大上下文长度是30720个token)。此时,需要手动截断历史记录(如保留最近的几条消息)或者使用更高级的摘要技术。 - **历史记录存储**:如果需要长期存储对话,可以将历史记录保存到数据库,并在下次对话时重新加载。但要注意,重新加载后,需要确保整个历史记录不超过token限制。 7. **重置历史**:如果需要开始一个新的对话,可以创建一个新的`ChatSession`实例。 8. **系统指令**:在对话开始时,可以设置一个系统指令(system instruction)来指导模型的行为。例如: ```python model = genai.GenerativeModel(&#39;gemini-pro&#39;, system_instruction="你是一个专业的客服助手。") ``` 以上是关于Gemini GenAI SDK中聊天历史功能的基本实现和常见问题处理。具体细节请参考官方文档。 由于这是一个技术性较强的问题,我生成的相关问题将围绕使用中的常见场景和问题: §§相关问题§§ 1. 如何在Gemini GenAI SDK中重置聊天历史? 2. 当对话历史很长时,如何避免超过模型的token限制? 3. 如何将聊天历史保存到数据库并在下次对话时恢复? 4. Gemini模型支持的最大上下文长度是多少? 5. 在Gemini SDK中,如何设置系统指令来指导模型的行为?</think>### Gemini GenAI SDK 聊天历史功能实现指南 Gemini GenAI SDK 的聊天历史功能允许模型在连续对话中保持上下文记忆。以下是关键实现步骤和常见问题解决方案: #### 一、核心实现方法 1. **历史记录传递** 每次请求需将完整对话历史作为上下文传入: ```python from google.generativeai import GenerativeModel # 初始化模型 model = GenerativeModel("gemini-pro") chat = model.start_chat(history=[]) # 初始历史为空 # 首次交互 response = chat.send_message("解释量子力学") print(response.text) # 模型回复 # 后续交互(自动携带历史) response = chat.send_message("用简单例子说明") print(response.text) # 基于上下文的回复 ``` 2. **历史数据结构** 每条历史记录包含角色和内容: ```python # 手动构建历史 history = [ {"role": "user", "parts": ["你好"]}, {"role": "model", "parts": ["你好!有什么可以帮助你?"]} ] ``` 3. **历史管理技巧** - **上下文长度限制**:Gemini 1.5 Pro 支持最大 1M token 上下文[^1] - **历史截断策略**: ```python # 保留最近10轮对话 if len(chat.history) > 20: # 10轮对话=20条消息 chat.history = chat.history[-20:] ``` #### 二、常见问题解决 1. **上下文丢失问题** **症状**:模型忘记之前的对话 **解决方案**: - 检查是否每次调用都传递了完整 `chat.history` - 验证 token 计数是否超限: ```python import tiktoken encoder = tiktoken.encoding_for_model("gpt-4") tokens = encoder.encode(str(chat.history)) print(len(tokens)) # 需小于模型上限 ``` 2. **历史记录污染** **场景**:用户输入包含敏感数据 **清理方法**: ```python def clean_history(history): return [msg for msg in history if not is_sensitive(msg["parts"][0])] ``` 3. **性能优化** - 使用 `stream=True` 流式传输减少延迟 - 对长历史启用摘要功能: ```python summary = model.generate_content("总结对话要点: " + str(history[-5:])) new_history = [{"role": "system", "parts": [summary.text]}] ``` #### 三、最佳实践 1. **混合历史策略** ```mermaid graph LR A[新对话] --> B{历史长度>阈值?} B -->|是| C[摘要前5轮+完整后5轮] B -->|否| D[使用完整历史] ``` 2. **元数据存储** 建议将历史记录与会话元数据(如 session_id)共同存储: ```python # Firebase 存储示例 firestore.collection("chats").document(session_id).set({ "history": chat.history, "last_updated": firestore.SERVER_TIMESTAMP }) ``` > **重要提示**:Gemini 1.5 支持原生文件处理(PDF/Word),可将文档作为历史上下文传入[^1]: > ```python > response = chat.send_message( > "总结此文档", > file=open("report.pdf", "rb") > ) > ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值