POJ 3183 Stump Removal

本文介绍了一种通过模拟爆炸过程来解决树桩移除问题的算法。该算法应用于一系列高度不等的树桩中,通过最少次数的爆炸操作实现所有树桩的移除。文章详细解释了算法的工作原理,并提供了一个C语言实现的例子。

http://poj.org/problem?id=3183

Stump Removal
Time Limit:1000MS Memory Limit:65536K



Description

Always thinking of the cows' grazing experience, FJ has found that he must remove N (1 <= N <= 50,000) unsightly stumps from the pasture. The stumps are conveniently arranged in a straight line and numbered 1..N with each stump having some height H_i (1 <= H_i <= 10,000).

FJ will use the traditional high explosives to destroy the stumps. These high explosives are formulated to destroy adjacent stumps as long as those adjacent stumps are strictly shorter than the nearest stump being destroyed. The blast can continue past the closest adjacent stump to the next adjacent stump if it is even shorter than the nearest stump just destroyed. As soon as a stump encountered by the blast wave is not shorter, though, no more destruction occurs on that side of the target stump (the other side follows the same rules with whatever stumps might appear there).

Consider a line of nine stumps with these heights:

              1 2 5 4 3 3 6 6 2
If FJ blows up the third stump (with height 5), then the second stump will also be destroyed (height 2) and the first stump (height 1) will also be destroyed. Likewise, the fourth stump (height 4) and fifth stump (height 3) will be destroyed since they are successively shorter, leaving the line like this:

              * * * * * 3 6 6 2
Two more explosives (at stumps 7 and 8) will destroy the rest.

Help FJ determine the minimum number of explosive charges he needs to destroy the stumps.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains H_i

Output

Lines 1..?: Each line contains one integer which is the index of a stump to blow up. The indices must be listed in increasing order.

Sample Input

9
1
2
5
4
3
3
6
6
2

Sample Output

3
7
8
/* Author : yan
 * Question : POJ 3183 Stump Removal
 * Data && Time : Monday, January 03 2011 11:04 PM
*/
#include<stdio.h>
#define bool _Bool
#define true 1
#define false 0
#define MAX 50005
int hight[MAX];
int n;
int cache_index;

int highest(int *start)
{
	int _i;
	for(_i= *start;_i<n;_i++)
	{
		if(hight[_i]>=hight[_i+1])
		{
			cache_index=_i;
			break;
		}
	}
	while(hight[_i]>hight[_i+1]) _i++;
	*start=_i;
	return cache_index;
}
int main()
{
	//freopen("input","r",stdin);
	int i;
	int ans;
	int start=-1;
	scanf("%d",&n);
	for(i=0;i<n;i++) scanf("%d",&hight[i]);

	while(start<n)
	{
		start++;
		ans=highest(&start);
		printf("%d/n",ans+1);
	}
	return 0;
}

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值