前面提到,很多人看到libSVM这么多的参数,估计要犯晕了。没关系,我之前把相关的libSVM参数已经讲解了一遍,这里,再给出libSVM的用法。如果你不想花时间去仔细研究libSVM,完全可以参照我的函数来直接调用libSVM完成你的工作。
首先是训练SVM得到模型;假设,有10个训练样本,每个训练样本,有12个特征值,即:每个训练样本的维数是12,也就是说,训练样本构成了一个10*12的矩阵(当然,所有数据应该被归一化到[-1,1]或[0,1]范围内),另外,所有训练样本,应该有一个明确的类别标签,以此来表明当前样本所属的类别。所以,完整的训练样本,应该是10*13的矩阵,这里,我们给出一个10*13的矩阵,并认为,它就是训练样本。每个训练样本是个行向量,而该矩阵的第一列则代表训练样本的“标签”。即:第一个训练样本,类别标签为“1”,第二个训练样本类别标签为“-1”。第一个训练样本的第一个特征值为0.708333,第二个特征值为1,第三个特征值为1...
doubleinputArr[10][13]=
{
1,0.708333,1,1,-0.320755,-0.105023,-1,1,-0.419847,-1,-0.225806,0,1,
-1,0.583333,-1,0.333333,-0.603774,1,-1,1,0.358779,-1,-0.483871,0,-1,
1,0.166667,1,-0.333333,-0.433962,-0.383562,-1,-1,0.0687023,-1,-0.903226,-1,-1,
-1,0.458333,1,1,-0.358491,-0.374429,-1,-1,-0.480916,1,-0.935484,0,-0.333333,
-1,0.875,-1,-0.333333,-0.509434,-0.347032,-1,1,-0.236641,1,-0.935484,-1,-0.333333,
-1,0.5,1,1,-0.509434,-0.767123,-1,-1,0.0534351,-1,-0.870968,-1,-1,
1,0.125,1,0.333333,-0.320755,-0.406393,1,1,0.0839695,1,-0.806452,0,-0.333333,
1,0.25,1,1,-0.698113,-0.484018,-1,1,0.0839695,1,-0.612903,0,-0.333333,
1,0.291667,1,1,-0.132075,-0.237443,-1,1,0.51145,-1,-0.612903,0,0.333333,
1,0.416667,-1,1,0.0566038,0.283105,-1,1,0.267176,-1,0.290323,0,1
};
另外,我们给出一个待分类的输入向量,并用行向量形式表示:
doubletestArr[]=
{
0.25,1,1,-0.226415,-0.506849,-1,-1,0.374046,-1,-0.83871,0,-1
};
下面,给出完整的SVM训练及预测程序:
#include"stdafx.h"
#include"svm.h"
#include"iostream"
#include"fstream"
usingnamespacestd;
doubleinputArr[10][13]=
{
1,0.708333,1,1,-0.320755,-0.105023,-1,1,-0.419847,-1,-0.225806,0,1,
-1,0.583333,-1,0.333333,-0.603774,1,-1,1,0.358779,-1,-0.483871,0,-1,
1,0.166667,1,-0.333333,-0.433962,-0.383562,-1,-1,0.0687023,-1,-0.903226,-1,-1,
-1,0.458333,1,1,-0.358491,-0.374429,-1,-1,-0.480916,1,-0.935484,0,-0.333333,
-1,0.875,-1,-0.333333,-0.509434,-0.347032,-1,1,-0.236641,1,-0.935484,-1,-0.333333,
-1,0.5,1,1,-0.509434,-0.767123,-1,-1,0.0534351,-1,-0.870968,-1,-1,
1,0.125,1,0.333333,-0.320755,-0.406393,1,1,0.0839695,1,-0.806452,0,-0.333333,
1,0.25,1,1,-0.698113,-0.484018,-1,1,0.0839695,1,-0.612903,0,-0.333333,
1,0.291667,1,1,-0.132075,-0.237443,-1,1,0.51145,-1,-0.612903,0,0.333333,
1,0.416667,-1,1,0.0566038,0.283105,-1,1,0.267176,-1,0.290323,0,1
};
doubletestArr[]=
{
0.25,1,1,-0.226415,-0.506849,-1,-1,0.374046,-1,-0.83871,0,-1
};
voidDefaultSvmParam(structsvm_parameter*param)
{
param->svm_type=C_SVC;
param->kernel_type=RBF;
param->degree=3;
param->gamma=0; //1/num_features
param->coef0=0;
param->nu=0.5;
param->cache_size=100;
param->C=1;
param->eps=1e-3;
param->p=0.1;
param->shrinking=1;
param->probability=0;
param->nr_weight=0;
param->weight_label=NULL;
param->weight=NULL;
}
voidSwitchForSvmParma(structsvm_parameter*param,charch,char*strNum,intnr_fold,intcross_validation)
{
switch(ch)
{
case's':
{
param->svm_type=atoi(strNum);
break;
}
case't':
{
param->kernel_type=atoi(strNum);
break;
}
case'd':
{
param->degree=atoi(strNum);
break;
}
case'g':
{
param->gamma=atof(strNum);
break;
}
case'r':
{
param->coef0=atof(strNum);
break;
}
case'n':
{
param->nu=atof(strNum);
break;
}
case'm':
{
param->cache_size=atof(strNum);
break;
}
case'c':
{
param->C=atof(strNum);
break;
}
case'e':
{
param->eps=atof(strNum);
break;
}
case'p':
{
param->p=atof(strNum);
break;
}
case'h':
{
param->shrinking=atoi(strNum);
break;
}
case'b':
{
param->probability=atoi(strNum);
break;
}
case'q':
{
break;
}
case'v':
{
cross_validation=1;
nr_fold=atoi(strNum);
if(nr_fold<2)
{
cout<<"nr_foldshould>2!!!file:"<<__FILE__<<"function:";
cout<<__FUNCTION__<<"line:"<<__LINE__<<endl;
}
break;
}
case'w':
{
++param->nr_weight;
param->weight_label=(int*)realloc(param->weight_label,sizeof(int)*param->nr_weight);
param->weight=(double*)realloc(param->weight,sizeof(double)*param->nr_weight);
param->weight_label[param->nr_weight-1]=atoi(strNum);
param->weight[param->nr_weight-1]=atof(strNum);
break;
}
default:
{
break;
}
}
}
voidSetSvmParam(structsvm_parameter*param,char*str,intcross_validation,intnr_fold)
{
DefaultSvmParam(param);
cross_validation=0;
charch='';
intstrSize=strlen(str);
for(inti=0;i<strSize;i++)
{
if(str[i]=='-')
{
ch=str[i+1];
intlength=0;
for(intj=i+3;j<strSize;j++)
{
if(isdigit(str[j]))
{
length++;
}
else
{
break;
}
}
char*strNum=newchar[length+1];
intindex=0;
for(intj=i+3;j<i+3+length;j++)
{
strNum[index]=str[j];
index++;
}
strNum[length]='/0';
SwitchForSvmParma(param,ch,strNum,nr_fold,cross_validation);
deletestrNum;
}
}
}
voidSvmTraining(char*option)
{
structsvm_parameterparam;
structsvm_problemprob;
structsvm_model*model;
structsvm_node*x_space;
intcross_validation=0;
intnr_fold=0;
intsampleCount=10;
intfeatureDim=12;
prob.l=sampleCount;
prob.y=newdouble[sampleCount];
prob.x=newstructsvm_node*[sampleCount];
x_space=newstructsvm_node[(featureDim+1)*sampleCount];
SetSvmParam(¶m,option,cross_validation,nr_fold);
for(inti=0;i<sampleCount;i++)
{
prob.y[i]=inputArr[i][0];
}
intj=0;
for(inti=0;i<sampleCount;i++)
{
prob.x[i]=&x_space[j];
for(intk=1;k<=featureDim;k++)
{
x_space[i*featureDim+k].index=k;
x_space[i*featureDim+k].value=inputArr[i][k];
}
x_space[(i+1)*featureDim].index=-1;
j=(i+1)*featureDim+1;
}
model=svm_train(&prob,¶m);
constchar*model_file_name="C://Model.txt";
svm_save_model(model_file_name,model);
svm_destroy_model(model);
svm_destroy_param(¶m);
delete[]prob.y;
delete[]prob.x;
delete[]x_space;
}
intSvmPredict(constchar*modelAdd)
{
structsvm_node*testX;
structsvm_model*testModel;
testModel=svm_load_model(modelAdd);
intfeatureDim=12;
testX=newstructsvm_node[featureDim+1];
for(inti=0;i<featureDim;i++)
{
testX[i].index=i+1;
testX[i].value=testArr[i];
}
testX[featureDim].index=-1;
doublep=svm_predict(testModel,testX);
svm_destroy_model(testModel);
delete[]testX;
if(p>0.5)
{
return1;
}
else
{
return-1;
}
}
int_tmain(intargc,_TCHAR*argv[])
{
SvmTraining("-c100-t1-g4-r1-d4");
intflag=SvmPredict("c://model.txt");
cout<<"flag="<<flag<<endl;
system("pause");
return0;
}