Big Number
| Time Limit:1000MS | Memory Limit:65536K | |
| Total Submissions:17518 | Accepted:5541 |
Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 <= m <= 10^7 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2 10 20
Sample Output
7 19
我们知道整数n的位数的计算方法为:log10(n)+1
故n!的位数为log10(n!)+1
由于这是高精度没法用普通方式计算阶乘,否则会TLE
可以用斯特林(Stirling)公式求解
斯特林(Stirling)公式:
|
于是求n!的位数就是求log10((2*PI*n)^1/2*(n/e)^n)+1
即 1/2*log10(2*PI*n)+n*log10(n/e)+1
/* Author yan
*/
#include<stdio.h>
#define PI 3.141592654
#define E 2.71828182846
int l(int n)
{
int s=1;
if(n>3)
s=log10(2*PI*n)/2+n*log10(n/E)+1;
return s;
}
int main()
{
int n;
int _i,cache;
scanf("%d",&n);
for(_i=0;_i<n;_i++)
{
scanf("%d",&cache);
printf("%d/n",l(cache));
}
return 0;
}
本文介绍了一种高效计算大数阶乘位数的方法。利用斯特林公式避免了传统计算阶乘过程中的溢出问题,适用于加密等应用场景。
1601

被折叠的 条评论
为什么被折叠?



