Java NIO

Java NIO非堵塞应用通常适用用在I/O读写等方面,我们知道,系统运行的性能瓶颈通常在I/O读写,包括对端口和文件的操作上,过去,在打开一个I/O通道后,read()将一直等待在端口一边读取字节内容,如果没有内容进来,read()也是傻傻的等,这会影响我们程序继续做其他事情,那么改进做法就是开设线程,让线程去等待,但是这样做也是相当耗费资源的。

Java NIO非堵塞技术实际是采取Reactor模式,或者说是Observer模式为我们监察I/O端口,如果有内容进来,会自动通知我们,这样,我们就不必开启多个线程死等,从外界看,实现了流畅的I/O读写,不堵塞了。

Java NIO出现不只是一个技术性能的提高,你会发现网络上到处在介绍它,因为它具有里程碑意义,从JDK1.4开始,Java开始提高性能相关的功能,从而使得Java在底层或者并行分布式计算等操作上已经可以和C或Perl等语言并驾齐驱。

如果你至今还是在怀疑Java的性能,说明你的思想和观念已经完全落伍了,Java一两年就应该用新的名词来定义。从JDK1.5开始又要提供关于线程、并发等新性能的支持,Java应用在游戏等适时领域方面的机会已经成熟,Java在稳定自己中间件地位后,开始蚕食传统C的领域。

本文主要简单介绍NIO的基本原理,在下一篇文章中,将结合Reactor模式和著名线程大师Doug Lea的一篇文章深入讨论。

NIO主要原理和适用。

NIO 有一个主要的类Selector,这个类似一个观察者,只要我们把需要探知的socketchannel告诉Selector,我们接着做别的事情,当有事件发生时,他会通知我们,传回一组SelectionKey,我们读取这些Key,就会获得我们刚刚注册过的socketchannel,然后,我们从这个Channel中读取数据,放心,包准能够读到,接着我们可以处理这些数据。

Selector内部原理实际是在做一个对所注册的channel的轮询访问,不断的轮询(目前就这一个算法),一旦轮询到一个channel有所注册的事情发生,比如数据来了,他就会站起来报告,交出一把钥匙,让我们通过这把钥匙来读取这个channel的内容。

了解了这个基本原理,我们结合代码看看使用,在使用上,也在分两个方向,一个是线程处理,一个是用非线程,后者比较简单,看下面代码:
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.channels.spi.*;
import java.net.*;
import java.util.*;
/**
*
* @author Administrator
* @version
*/
public class NBTest {


  /** Creates new NBTest */
  public NBTest()
  {
  }

  public void startServer() throws Exception
  {
  int channels = 0;
  int nKeys = 0;
  int currentSelector = 0;

  //使用Selector
  Selector selector = Selector.open();

  //建立Channel 并绑定到9000端口
  ServerSocketChannel ssc = ServerSocketChannel.open();
  InetSocketAddress address = new InetSocketAddress(InetAddress.getLocalHost(),9000);
  ssc.socket().bind(address);

  //使设定non-blocking的方式。
  ssc.configureBlocking(false);

  //向Selector注册Channel及我们有兴趣的事件
  SelectionKey s = ssc.register(selector, SelectionKey.OP_ACCEPT);
  printKeyInfo(s);

  while(true) //不断的轮询
  {
    debug("NBTest: Starting select");

    //Selector通过select方法通知我们我们感兴趣的事件发生了。
    nKeys = selector.select();
    //如果有我们注册的事情发生了,它的传回值就会大于0
    if(nKeys > 0)
    {
      debug("NBTest: Number of keys after select operation: " +nKeys);

      //Selector传回一组SelectionKeys
      //我们从这些key中的channel()方法中取得我们刚刚注册的channel。
      Set selectedKeys = selector.selectedKeys();
      Iterator i = selectedKeys.iterator();
      while(i.hasNext())
      {
         s = (SelectionKey) i.next();
         printKeyInfo(s);
         debug("NBTest: Nr Keys in selector: " +selector.keys().size());

         //一个key被处理完成后,就都被从就绪关键字(ready keys)列表中除去
         i.remove();
         if(s.isAcceptable())
         {
           // 从channel()中取得我们刚刚注册的channel。
           Socket socket = ((ServerSocketChannel)s.channel()).accept().socket();
           SocketChannel sc = socket.getChannel();

           sc.configureBlocking(false);
           sc.register(selector, SelectionKey.OP_READ |SelectionKey.OP_WRITE);
                      System.out.println(++channels);
         }
         else
         {
           debug("NBTest: Channel not acceptable");
         }
      }
   }
   else
   {
      debug("NBTest: Select finished without any keys.");
   }

  }

}


private static void debug(String s)
{
  System.out.println(s);
}


private static void printKeyInfo(SelectionKey sk)
{
  String s = new String();

  s = "Att: " + (sk.attachment() == null ? "no" : "yes");
  s += ", Read: " + sk.isReadable();
  s += ", Acpt: " + sk.isAcceptable();
  s += ", Cnct: " + sk.isConnectable();
  s += ", Wrt: " + sk.isWritable();
  s += ", Valid: " + sk.isValid();
  s += ", Ops: " + sk.interestOps();
  debug(s);
}


/**
* @param args the command line arguments
*/
public static void main (String args[])
{
  NBTest nbTest = new NBTest();
  try
  {
    nbTest.startServer();
  }
    catch(Exception e)
  {
    e.printStackTrace();
  }
}

}

这是一个守候在端口9000的noblock server例子,如果我们编制一个客户端程序,就可以对它进行互动操作,或者使用telnet 主机名 90000 可以链接上。

通过仔细阅读这个例程,相信你已经大致了解NIO的原理和使用方法,下一篇,我们将使用多线程来处理这些数据,再搭建一个自己的Reactor模式。
Java NIO(New I/O)是Java 1.4引入的新的I/O API,用于替代标准的Java I/O API。它提供了非阻塞I/O操作,能显著提高程序的性能和可扩展性,尤其适用于处理大量并发连接的场景。 ### 核心组件 - **Channel(通道)**:Channel是对传统I/O中流的模拟,用于在缓冲区和实体(如文件、套接字)之间传输数据。常见的Channel实现有FileChannel、SocketChannel、ServerSocketChannel和DatagramChannel等。例如,FileChannel用于文件读写,SocketChannel用于TCP网络通信。 - **Buffer(缓冲区)**:Buffer是一个用于存储特定基本类型数据的容器。所有的缓冲区都是Buffer抽象类的子类,如ByteBuffer、CharBuffer、IntBuffer等。使用时,数据先被写入Buffer,再从Buffer读取到Channel,反之亦然。 - **Selector(选择器)**:Selector是Java NIO实现非阻塞I/O的关键。它允许一个线程处理多个Channel的I/O事件。通过将多个Channel注册到一个Selector上,Selector可以不断轮询这些Channel,当某个Channel有可用的I/O操作时,就会被Selector选中,从而实现单线程处理多个连接的目的。 - **SelectionKey(选择键)**:SelectionKey用于维护Selector和SelectableChannel的关系,每个Channel注册到Selector时都会产生一个SelectionKey,它聚合了Channel和Selector,有点类似EventKey。通过SelectionKey可以获取对应的Channel和Selector,还可以设置和查询感兴趣的I/O事件类型,如读、写、连接和接受连接事件等 [^1]。 ### 使用指南 #### 1. 使用FileChannel进行文件读写 ```java import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.nio.ByteBuffer; import java.nio.channels.FileChannel; public class FileChannelExample { public static void main(String[] args) { try (FileInputStream fis = new FileInputStream("input.txt"); FileOutputStream fos = new FileOutputStream("output.txt"); FileChannel inChannel = fis.getChannel(); FileChannel outChannel = fos.getChannel()) { ByteBuffer buffer = ByteBuffer.allocate(1024); while (inChannel.read(buffer) != -1) { buffer.flip(); // 切换为读模式 outChannel.write(buffer); buffer.clear(); // 清空缓冲区,准备下一次写入 } } catch (IOException e) { e.printStackTrace(); } } } ``` #### 2. 使用Selector实现非阻塞网络编程 ```java import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.SelectionKey; import java.nio.channels.Selector; import java.nio.channels.ServerSocketChannel; import java.nio.channels.SocketChannel; import java.util.Iterator; import java.util.Set; public class NioServerExample { public static void main(String[] args) { try (ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); Selector selector = Selector.open()) { serverSocketChannel.socket().bind(new InetSocketAddress(8080)); serverSocketChannel.configureBlocking(false); serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT); while (true) { int readyChannels = selector.select(); if (readyChannels == 0) continue; Set<SelectionKey> selectedKeys = selector.selectedKeys(); Iterator<SelectionKey> keyIterator = selectedKeys.iterator(); while (keyIterator.hasNext()) { SelectionKey key = keyIterator.next(); if (key.isAcceptable()) { ServerSocketChannel serverChannel = (ServerSocketChannel) key.channel(); SocketChannel socketChannel = serverChannel.accept(); socketChannel.configureBlocking(false); socketChannel.register(selector, SelectionKey.OP_READ); } else if (key.isReadable()) { SocketChannel socketChannel = (SocketChannel) key.channel(); ByteBuffer buffer = ByteBuffer.allocate(1024); int bytesRead = socketChannel.read(buffer); if (bytesRead > 0) { buffer.flip(); byte[] data = new byte[buffer.remaining()]; buffer.get(data); System.out.println(new String(data)); } } keyIterator.remove(); } } } catch (IOException e) { e.printStackTrace(); } } } ``` ### 原理 Java NIO的非阻塞I/O原理基于操作系统的I/O多路复用机制。在传统的阻塞I/O模型中,一个线程只能处理一个连接,当线程在等待某个连接的数据时会被阻塞,无法处理其他连接。而在Java NIO中,Selector利用操作系统提供的I/O多路复用功能,如Linux的select、poll和epoll,通过一个线程监控多个Channel的I/O状态。当某个Channel有数据可读或可写时,Selector会感知到并通知应用程序进行相应的处理,从而实现单线程处理多个连接,提高了系统的并发处理能力。 ### 应用场景 - **网络编程**:在构建高性能的网络服务器时,如Web服务器、聊天服务器、游戏服务器等,Java NIO的非阻塞I/O特性可以显著减少线程数量,降低系统资源消耗,提高服务器的并发处理能力。 - **文件处理**:对于大文件的读写操作,使用FileChannel和ByteBuffer可以提高文件读写的效率,尤其是在需要随机访问文件内容时。 - **实时数据处理**:在处理实时数据流时,如视频流、音频流等,Java NIO可以高效地处理数据的传输和处理,确保数据的实时性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值