Problem11

问题描述:

In the 2020 grid below, four numbers along a diagonal line have been marked in red.

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48


The product of these numbers is 26 63 78 14 = 1788696.

What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the 2020 grid?


这个题目和Problem8类似!
就是多了方向
我的思路是四个方向依次找到最大值,然后在最大值找到最大的~
最终的方法其实是public static int cout_row(int[] data){}
找到一行数据中的复合题目要求的最大值
这样就将其转换为Problem8了~


public static int cout_row(int[] data){
int result = 0;
int step = 4;
int max = 0;
int first = 0;
for(int i=0; i<=data.length-step; i++){
if(result==0){
result = 1;
first = data[i];
for(int j=0; j<step; j++){
if(data[i+j]==0){
i = i + j + step;
result = 0;
break;
}else{
result *= data[i+j];
}
}
if(result > max){
max = result;
}
i = i + step - 1;
}else{
if(data[i]==0){
result = 0;
continue;
}else{
result = (result*data[i])/first;
first = data[i-step+1];
if(result>max){
max = result;
}
}
}
}

return max;
}

public static int count_horizontal(int[][] data){
int result = 0;
int max = 0;
int step = 4;
for(int i=0; i<data.length; i++){
int first = data[i][0];
result = 0;
for(int j=0; j<data[i].length - step; j++){
if(result==0){
result = 1;
for (int k = 0; k < step; k++) {
if(data[i][j+k]==0){
j = j + k + step ;
result = 0;
break;
}else{
result *= data[i][j+k];
if(result>max){
max = result;
}
}
}
j = j+step-1;
first = data[i][j];
}else{
if(data[i][j]==0){
result =0;
continue;
}else{
result = result*data[i][j]/first;
if(result>max)
max = result;
first = data[i][j];
}
}
}
}
return max;
}

public static int count_vertical(int[][] data){
int result = 0;
int max = 0;
int step = 4;
for(int i=0; i<data.length; i++){
int first = data[0][i];
result = 0;
for(int j=0; j<data[i].length - step; j++){
if(result==0){
result = 1;
for (int k = 0; k < step; k++) {
if(data[j+k][i]==0){
j = j + k + step ;
result = 0;
break;
}else{
result *= data[j+k][i];
if(result>max){
max = result;
}
}
}
j = j+step-1;
first = data[j][i];
}else{
if(data[j][i]==0){
result =0;
continue;
}else{
result = result*data[j][i]/first;
if(result>max)
max = result;
first = data[j][i];
}
}
}
}
return max;
}

public static int count_leading_diagonal(int[][] data){
int result = 0;
int max = 0;
int length = data[0].length;
int step = 4;
int[] row_data = new int[data.length];
//主对角线单独处理
for(int i=0; i<length; i++){
row_data[i] = data[i][i];
}
result = cout_row(row_data);
if(result>max){
max = result;
}
//处理主对角线方向上的
for(int i=1; i<length; i++){
row_data = new int[length-i];
for(int j=0; j<length-i;j++){
row_data[j] = data[j][i+j];
}
result = cout_row(row_data);
if(result>max){
max = result;
}
for(int j=0; j<length-i;j++){
row_data[j] = data[i+j][j];
}
result = cout_row(row_data);
if(result>max){
max = result;
}
}

return max ;
}

public static int count_Inclined_diagonal(int[][] data){
int result = 0;
int max = 0;
int length = data[0].length;
int step = 4;
int[] row_data = new int[data.length];
//斜对角线单独处理
for(int i=0; i<length; i++){
row_data[i] = data[length-i-1][length-i-1];
}
result = cout_row(row_data);
if(result>max){
max = result;
}
//处理斜对角线方向上的
for(int i=length-2; i>length-step; i--){
row_data = new int[i+1];
for(int j=0; j<=i;j++){
row_data[j] = data[j][i-j];
}
result = cout_row(row_data);
if(result>max){
max = result;
}
row_data = new int[i+1];
for(int j=0; j<=i;j++){
row_data[j] = data[i-j][j];
}
result = cout_row(row_data);
if(result>max){
max = result;
}
}

return max ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值