Spring+Mybatis多数据源的实现:[url]http://donald-draper.iteye.com/blog/2326034[/url]
在上面一篇文章中我们在数据源切换的过程中用到过ThreadLocal,用ThreadLocal数据源名,主要是
保证每个线程的数据源相互独立,互不干扰。ThreadLocal声明的变量保证每个线程拥有一个独立的副本;以前的无论是Redis还是ActiveMQ系列篇中,凡是有数据源事务关联的我们都看到ThreadLocal,主要是保证每个线程的事务独立性,避免事务交叉。今天我们就来看看ThreadLocal源码。
//ThreadLocal
我们一般用ThreadLocal为如下形式
ThreadLocal一般被声明为 private static final。
ThreadLocal主要要set,get和remove,3个主要方法。下面我们分别来看:
先看set方法;
这个方法有3点要关注为:
1.
2.
3.
下面我们分别来看这几点,先看第3点:
上面这一段是线程的内部变量threadLocals,inheritableThreadLocals;
threadLocals保存线程本地变量,inheritableThreadLocals保存从父类继承的线程本地变量。在往下看之前我们来看一下ThreadLocalMap的定义:
回到set方法的几个关键点
1.
2.
这里有节点要关注:
a.
b.
c.
下面分别来看这几点:
a.
b.
从方法来看replaceStaleEntry所有做的工作,从当前Stale Entry的位置staleSlot,
遍历找到最前面的Stale Entry的位置slotToExpunge,并向后遍历Entry如果有Key相等的,
则与staleSlot交换Entry,即将stale Entry往table后面移。如果Stale Entry的位置staleSlot前面没有stale Entry,则slotToExpunge为当前位置(staleSlot后第一个与key相等的),移除当前位置Entry,并重新冲突的Entry。如果staleSlot的Entry为stale状态,则移除。
先来看一下向前移动位置:
再来看移除stale Entry,解决冲突的Entry。
c.
来看重hash
至此ThreadLocal的set方法讲解完毕,小节一下:
每个线程拥有一个线程本地变量ThreadLocalMap-threadLocals和一个可继承的ThreadLocalMap-inheritableThreadLocals。每个ThreadLocal关联一个threadLocalHashCode,在设值ThreadLocal时,获取当前线程的线程本地变量ThreadLocalMap-threadLocals,如果为空,则初始化当前线程的threadLocals,
即创建一个ThreadLocalMap,并将TheadLocal的threadLocalHashCode与value的映射Entry添加到threadLocals中,如果当前线程的threadLocals不为null,则添加TheadLocal的threadLocalHashCode与value的映射Entry。
再看看get方法:
//先看从Map获取值
//ThreadLocalMap
再来看初始化TheadLocal
从上面来看get方法,首先获取当前线程的线程本地变量Map-threadLocals,如果不为空,则从Map中,获取ThreadLocal的threadLocalHashCode对应Entry,返回对应的值,如果threadLocals为null,首先初始化ThreadLocal的值,然后重新检查
threadLocals是否为null,后面的与set的方法相同,就不说了。
再来看remove方法:
//ThreadLocalMap
我们来看参考清除
移除操作,主要是从当前线程的threadLocals移除对应的TheadLocal,并清除TheadLocal的引用。
再看创建可继承的线程本地变量方法:
//ThreadLocalMap
总结:
[color=blue]每个线程拥有一个线程本地变量ThreadLocalMap-threadLocals和一个可继承的ThreadLocalMap-inheritableThreadLocals。每个ThreadLocal关联一个threadLocalHashCode,在set设值ThreadLocal时,获取当前线程的线程本地变量ThreadLocalMap-threadLocals,如果为空,则初始化当前线程的threadLocals,
即创建一个ThreadLocalMap,并将TheadLocal的threadLocalHashCode与value的映射Entry添加到threadLocals中,如果当前线程的threadLocals不为null,则添加TheadLocal的threadLocalHashCode与value的映射Entry。get方法,首先获取当前线程的线程本地变量Map-threadLocals,如果不为空,则从Map中,获取ThreadLocal的threadLocalHashCode对应Entry,返回对应的值,如果threadLocals为null,首先初始化ThreadLocal的值,然后重新检查threadLocals是否为null,后面的与set的方法相同,就不说了。移除操作,主要是从当前线程的threadLocals移除对应的TheadLocal,并清除TheadLocal的引用。[/color]
最后我们再来看一下可继承的线程本地变量InheritableThreadLocal
//InheritableThreadLocal
实例:
//WeakReference
Reference:
[img]http://dl2.iteye.com/upload/attachment/0124/2284/1475e8b3-0d02-300d-80cb-2081b0c3cdd9.png[/img]
在上面一篇文章中我们在数据源切换的过程中用到过ThreadLocal,用ThreadLocal数据源名,主要是
保证每个线程的数据源相互独立,互不干扰。ThreadLocal声明的变量保证每个线程拥有一个独立的副本;以前的无论是Redis还是ActiveMQ系列篇中,凡是有数据源事务关联的我们都看到ThreadLocal,主要是保证每个线程的事务独立性,避免事务交叉。今天我们就来看看ThreadLocal源码。
//ThreadLocal
package java.lang;
import java.lang.ref.*;
import java.util.concurrent.atomic.AtomicInteger;
/**
* This class provides thread-local variables. These variables differ from
* their normal counterparts in that each thread that accesses one (via its
* <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized
* copy of the variable. <tt>ThreadLocal</tt> instances are typically private
* static fields in classes that wish to associate state with a thread (e.g.,
* a user ID or Transaction ID).
*
ThreadLocal提供线程本地变量。这些变量不同于线程一般用get和set方法获取的变量,
它是一个独立的变量初始化拷贝。ThreadLocal实例是典型的私有静态访问fields,比如
我们希望每个线程关联一个状态,如用户或事物的ID
* <p>For example, the class below generates unique identifiers local to each
* thread.
* A thread's id is assigned the first time it invokes <tt>ThreadId.get()</tt>
* and remains unchanged on subsequent calls.
举个例子,ThreadId保证了每个线程用于一个本地唯一的标识。如果一个线程的id,在以第一次调用
ThreadId.get()方法时指定,接下来将不能改变
* <pre>
* import java.util.concurrent.atomic.AtomicInteger;
*
* public class ThreadId {
* // Atomic integer containing the next thread ID to be assigned
* private static final AtomicInteger nextId = new AtomicInteger(0);
*
* // Thread local variable containing each thread's ID
* private static final ThreadLocal<Integer> threadId =
* new ThreadLocal<Integer>() {
* @Override
protected Integer initialValue() {
* return nextId.getAndIncrement();
* }
* };
*
* // Returns the current thread's unique ID, assigning it if necessary
* public static int get() {
* return threadId.get();
* }
* }
* </pre>
* <p>Each thread holds an implicit reference to its copy of a thread-local
* variable as long as the thread is alive and the <tt>ThreadLocal</tt>
* instance is accessible; after a thread goes away, all of its copies of
* thread-local instances are subject to garbage collection (unless other
* references to these copies exist).
*
只要线程存活,每个线程将拥有一个隐式的线程本地变量ThreadLocal的副本,在一个线程结束
之后所有的线程本地变量将会被垃圾回收器回收,除非有其他副本引用。
* @author Josh Bloch and Doug Lea
* @since 1.2
*/
public class ThreadLocal<T> {
/**
* ThreadLocals rely on per-thread linear-probe hash maps attached
* to each thread (Thread.threadLocals and
* inheritableThreadLocals). The ThreadLocal objects act as keys,
* searched via threadLocalHashCode. This is a custom hash code
* (useful only within ThreadLocalMaps) that eliminates collisions
* in the common case where consecutively constructed ThreadLocals
* are used by the same threads, while remaining well-behaved in
* less common cases.
ThreadLocals依靠每个线程的哈希Map将线程本地变量(Thread.threadLocals and
inheritableThreadLocals)保存在每个线程中。ThreadLocal作为Entry的Key我们
可以通过threadLocalHashCode查找。这个哈希值只对ThreadLocalMaps有用,用于
排除在相同的线程中构造ThreadLocals引起的冲突,
*/
private final int threadLocalHashCode = nextHashCode();
/**
* The next hash code to be given out. Updated atomically. Starts at
* zero.
用于计算下一个哈希值
*/
private static AtomicInteger nextHashCode =
new AtomicInteger();
/**
* The difference between successively generated hash codes - turns
* implicit sequential thread-local IDs into near-optimally spread
* multiplicative hash values for power-of-two-sized tables.
//哈希值增长步长,计算ThreadLocal的ID
*/
private static final int HASH_INCREMENT = 0x61c88647;
/**
* Returns the next hash code.
返回ThreadLocal的下一个hashCode,先get后add
*/
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
/**
* Creates a thread local variable.
*/
public ThreadLocal() {
}
}
我们一般用ThreadLocal为如下形式
/**
* 数据源上下文
* @author donald
*
*/
public class DataSourceContextHolder {
public final static String DATA_SOURCE_LOCAL = "dataSource";
public final static String DATA_SOURCE_SYNC = "syncDataSource";
//对数据源名,线程隔离
private static final ThreadLocal<String> contextHolder = new ThreadLocal<String>();
public static void setDataSourceType(String dataSource) {
contextHolder.set(dataSource);
}
public static String getDataSourceType() {
return contextHolder.get();
}
public static void clearDataSourceType() {
contextHolder.remove();
}
}
ThreadLocal一般被声明为 private static final。
ThreadLocal主要要set,get和remove,3个主要方法。下面我们分别来看:
先看set方法;
/**
* Sets the current thread's copy of this thread-local variable
* to the specified value. Most subclasses will have no need to
* override this method, relying solely on the {@link #initialValue}
* method to set the values of thread-locals.
*
设置当前线程本地变量的拷贝为特定的值。大多数的子类不需要重写此方法,
只需要单独重写#initialValue设置线程本地变量值。
* @param value the value to be stored in the current thread's copy of
* this thread-local.
*/
public void set(T value) {
Thread t = Thread.currentThread();
//获取当前线程的ThreadLocalMap
ThreadLocalMap map = getMap(t);
if (map != null)
//如果不为null,则将TheadLocal和对应的值放入ThreadLocalMap
map.set(this, value);
else
//否则根据当前线程和对应的线程本地变量值创建ThreadLocalMap
createMap(t, value);
}
这个方法有3点要关注为:
1.
Thread t = Thread.currentThread();
//获取当前线程的ThreadLocalMap
ThreadLocalMap map = getMap(t);
2.
if (map != null)
//如果不为null,则将TheadLocal和对应的值放入ThreadLocalMap
map.set(this, value);
3.
else
//否则根据当前线程和对应的线程本地变量值创建ThreadLocalMap
createMap(t, value);
下面我们分别来看这几点,先看第3点:
else
//否则根据当前线程和对应的线程本地变量值创建ThreadLocalMap
createMap(t, value);
/**
* Create the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
*
创建当前线程的ThreadLocalMap,并ThreadLocal和对应的value添加到ThreadLocalMap
* @param t the current thread
* @param firstValue value for the initial entry of the map
* @param map the map to store.
*/
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
//Thread
/* ThreadLocal values pertaining to this thread. This map is maintained
* by the ThreadLocal class. */
ThreadLocal.ThreadLocalMap threadLocals = null;
/*
* InheritableThreadLocal values pertaining to this thread. This map is
* maintained by the InheritableThreadLocal class.
*/
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
上面这一段是线程的内部变量threadLocals,inheritableThreadLocals;
threadLocals保存线程本地变量,inheritableThreadLocals保存从父类继承的线程本地变量。在往下看之前我们来看一下ThreadLocalMap的定义:
/**
* ThreadLocalMap is a customized hash map suitable only for
* maintaining thread local values. No operations are exported
* outside of the ThreadLocal class. The class is package private to
* allow declaration of fields in class Thread. To help deal with
* very large and long-lived usages, the hash table entries use
* WeakReferences for keys. However, since reference queues are not
* used, stale entries are guaranteed to be removed only when
* the table starts running out of space.
ThreadLocalMap是用于维护线程本地变量的哈希Map。没够操作暴露给外部的类ThreadLocal。ThreadLocalMap是私有的内部类,允许在Thread中声明为fields。为了保证在大量长存活对象存在的Map的高效可利用性,我们用WeakReferences来保存key值。由于队列不在被引用,当table使用时,超时空间,可以保证那些stale(陈腐,即key为null)的Entry被移除。
*/
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
Entry扩展了WeakReference,用于维护key的引用。如果可以为null,表示key不在
被引用,可以从哈希表中移除。这样的Entry,我们在以下代码中称谓stale entries,。
*/
static class Entry extends WeakReference<ThreadLocal> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal k, Object v) {
super(k);
value = v;
}
}
/**
* The initial capacity -- MUST be a power of two.
初始化容量,必须为2的N次方
*/
private static final int INITIAL_CAPACITY = 16;
/**
* The table, resized as necessary.
* table.length MUST always be a power of two.
存放Entry的table,长度总是为2的n次方,如果需要重新扩容
*/
private Entry[] table;
/**
* The number of entries in the table.
table中的Entry数。
*/
private int size = 0;
/**
* The next size value at which to resize.
扩容因子
*/
private int threshold; // Default to 0
/**
* Set the resize threshold to maintain at worst a 2/3 load factor.
设置扩容因子为扩容临界条件的2/3
*/
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
/**
* Construct a new map initially containing (firstKey, firstValue).
* ThreadLocalMaps are constructed lazily, so we only create
* one when we have at least one entry to put in it.
构建一个ThreadLocalMap,并将Entry(firstKey, firstValue)放入到hashMap中
*/
ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
//获取ThreadLocal的table索引
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
//设置扩容临界条件为初始化容量的2/3
setThreshold(INITIAL_CAPACITY);
}
}
回到set方法的几个关键点
1.
Thread t = Thread.currentThread();
//获取当前线程的ThreadLocalMap
ThreadLocalMap map = getMap(t);
/**
* Get the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
*
直接返回线程的ThreadLocalMap
* @param t the current thread
* @return the map
*/
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
2.
if (map != null)
//如果不为null,则将TheadLocal和对应的值放入ThreadLocalMap
map.set(this, value);
/**
* Set the value associated with key.
*设置线程本地变量的值
* @param key the thread local object
* @param value the value to be set
*/
private void set(ThreadLocal key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
//定位线程本地变量在ThreadLocalMap的table中的索引
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal k = e.get();
if (k == key) {
//如果ThreadLocal已经存在,则更新对应的值
e.value = value;
return;
}
if (k == null) {
//如果ThreadLocal不存在,则替换ThreadLocal
replaceStaleEntry(key, value, i);
return;
}
}
//索引上的Entry为null,则创建一个新Entry添加table中
tab[i] = new Entry(key, value);
int sz = ++size;
//如果清除索引i之后table上stale Entry失败,且到达扩容条件,则扩容
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
这里有节点要关注:
a.
nextIndex(i, len)
b.
if (k == null) {
//如果ThreadLocal不存在,则替换ThreadLocal
replaceStaleEntry(key, value, i);
return;
}
c.
//如果清除索引i之后table上stale Entry失败,且到达扩容条件,则扩容
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
下面分别来看这几点:
a.
nextIndex(i, len)
/**
* Increment i modulo len.
//获取索引i的下一个table索引
*/
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
b.
if (k == null) {
//如果ThreadLocal不存在,则替换ThreadLocal
replaceStaleEntry(key, value, i);
return;
}
private void replaceStaleEntry(ThreadLocal key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
int slotToExpunge = staleSlot;
//向索引i之前遍历,找到第一个Entry的key为null的
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
//如果Entry对应的key,及ThreadLocal为null,记录索引
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
//向staleSlot之后遍历
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
if (k == key) {
//如果key相等,则交换当前的Entry和之前Entry的key为null的stale entry,
//即将stale Entry往table的后面移
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
//如果staleSlot之前没有stale Entry,则slotToExpune为i
if (slotToExpunge == staleSlot)
slotToExpunge = i;
//清除
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
//如果向后遍历的Entry的key为null,且staleSlot前面无stale Entry,则
//需要清除的Entry为当前Entry
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
如果staleSlot之后的Entry为null,则直接将新放入的Entry添加到table的staleSlot位置上
// If key not found, put new entry in stale slot
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
// If there are any other stale entries in run, expunge them
//存在其他的stale Entry,则清除
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}
从方法来看replaceStaleEntry所有做的工作,从当前Stale Entry的位置staleSlot,
遍历找到最前面的Stale Entry的位置slotToExpunge,并向后遍历Entry如果有Key相等的,
则与staleSlot交换Entry,即将stale Entry往table后面移。如果Stale Entry的位置staleSlot前面没有stale Entry,则slotToExpunge为当前位置(staleSlot后第一个与key相等的),移除当前位置Entry,并重新冲突的Entry。如果staleSlot的Entry为stale状态,则移除。
先来看一下向前移动位置:
/**
* Decrement i modulo len.
*/
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}
再来看移除stale Entry,解决冲突的Entry。
/**
* Expunge a stale entry by rehashing any possibly colliding entries
* lying between staleSlot and the next null slot. This also expunges
* any other stale entries encountered before the trailing null. See
* Knuth, Section 6.4
*
* @param staleSlot index of slot known to have null key
* @return the index of the next null slot after staleSlot
* (all between staleSlot and this slot will have been checked
* for expunging).
*/
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
//移除staleSlot位置的Entry
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal k = e.get();
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
//遍历staleSlot之后的Entry,如果为stale,则移除,否则重新hash
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
c.
//如果清除索引i之后table上stale Entry失败,且到达扩容条件,则扩容
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
//移除i位置之后的的stale Entry
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
//向后遍历table
do {
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null) {
n = len;
//Entry为stale,则移除
removed = true;
//移除i位置上的stale,并解决冲突
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0);
return removed;
}
来看重hash
/**
* Re-pack and/or re-size the table. First scan the entire
* table removing stale entries. If this doesn't sufficiently
* shrink the size of the table, double the table size.
*/
private void rehash() {
//移除所有stale Entry
expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis
if (size >= threshold - threshold / 4)
resize();
}
/**
* Expunge all stale entries in the table.
移除所有stale Entry
*/
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);
}
}
/**
* Double the capacity of the table.
扩容,这个有了前面的基础,这里就容易了
*/
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
for (int j = 0; j < oldLen; ++j) {
Entry e = oldTab[j];
if (e != null) {
ThreadLocal k = e.get();
if (k == null) {
e.value = null; // Help the GC
} else {
int h = k.threadLocalHashCode & (newLen - 1);
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
setThreshold(newLen);
size = count;
table = newTab;
}
至此ThreadLocal的set方法讲解完毕,小节一下:
每个线程拥有一个线程本地变量ThreadLocalMap-threadLocals和一个可继承的ThreadLocalMap-inheritableThreadLocals。每个ThreadLocal关联一个threadLocalHashCode,在设值ThreadLocal时,获取当前线程的线程本地变量ThreadLocalMap-threadLocals,如果为空,则初始化当前线程的threadLocals,
即创建一个ThreadLocalMap,并将TheadLocal的threadLocalHashCode与value的映射Entry添加到threadLocals中,如果当前线程的threadLocals不为null,则添加TheadLocal的threadLocalHashCode与value的映射Entry。
再看看get方法:
* Returns the value in the current thread's copy of this
* thread-local variable. If the variable has no value for the
* current thread, it is first initialized to the value returned
* by an invocation of the {@link #initialValue} method.
*
返回当前线程的线程本地变量的值。如果当前线程的线程本地变量Map为空,则初始化线程本地变量值。
* @return the current thread's value of this thread-local
*/
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
//如果当线程的线程本地变量Map不为null,直接从Map中获取
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null)
return (T)e.value;
}
//否则,初始化线程本地变量值
return setInitialValue();
}
//先看从Map获取值
//ThreadLocalMap
private Entry getEntry(ThreadLocal key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
//找到,则返回对应的Entry
return e;
else
return getEntryAfterMiss(key, i, e);
}
* Version of getEntry method for use when key is not found in
* its direct hash slot.
*
* @param key the thread local object
* @param i the table index for key's hash code
* @param e the entry at table[i]
* @return the entry associated with key, or null if no such
*/
private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
//遍历i位置之后的Entry,找到key对应的Entry,则返回,如果Entry为stale,则移除
while (e != null) {
ThreadLocal k = e.get();
if (k == key)
return e;
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
再来看初始化TheadLocal
/**
* Variant of set() to establish initialValue. Used instead
* of set() in case user has overridden the set() method.
*
* @return the initial value
*/
private T setInitialValue() {
//获取初始化值
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}
//待子类扩展
protected T initialValue() {
return null;
}
从上面来看get方法,首先获取当前线程的线程本地变量Map-threadLocals,如果不为空,则从Map中,获取ThreadLocal的threadLocalHashCode对应Entry,返回对应的值,如果threadLocals为null,首先初始化ThreadLocal的值,然后重新检查
threadLocals是否为null,后面的与set的方法相同,就不说了。
再来看remove方法:
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
//如果当前线程的threadLocals不为null,直接从threadLocals中移除ThreadLocal
m.remove(this);
}
//ThreadLocalMap
/**
* Remove the entry for key.
*/
private void remove(ThreadLocal key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
//遍历ThreadLocal位置之后的Entry,如果key相等,则移除Entry,并清除参考
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)])
if (e.get() == key) {
e.clear();
expungeStaleEntry(i);
return;
}
}
}
我们来看参考清除
e.clear();
//Reference
/**
* Clears this reference object. Invoking this method will not cause this
* object to be enqueued.
*
* <p> This method is invoked only by Java code; when the garbage collector
* clears references it does so directly, without invoking this method.
*/
public void clear() {
this.referent = null;
}
移除操作,主要是从当前线程的threadLocals移除对应的TheadLocal,并清除TheadLocal的引用。
再看创建可继承的线程本地变量方法:
/**
* Factory method to create map of inherited thread locals.
* Designed to be called only from Thread constructor.
*
* @param parentMap the map associated with parent thread
* @return a map containing the parent's inheritable bindings
*/
static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
return new ThreadLocalMap(parentMap);
}
//ThreadLocalMap
/**
* Construct a new map including all Inheritable ThreadLocals
* from given parent map. Called only by createInheritedMap.
*
将父线程中的线程本地变量,放到子线程中
* @param parentMap the map associated with parent thread.
*/
private ThreadLocalMap(ThreadLocalMap parentMap) {
Entry[] parentTable = parentMap.table;
int len = parentTable.length;
setThreshold(len);
table = new Entry[len];
for (int j = 0; j < len; j++) {
Entry e = parentTable[j];
if (e != null) {
ThreadLocal key = e.get();
if (key != null) {
//获取Thread子线程的值
Object value = key.childValue(e.value);
Entry c = new Entry(key, value);
int h = key.threadLocalHashCode & (len - 1);
while (table[h] != null)
h = nextIndex(h, len);
table[h] = c;
size++;
}
}
}
}
/**
* Method childValue is visibly defined in subclass
* InheritableThreadLocal, but is internally defined here for the
* sake of providing createInheritedMap factory method without
* needing to subclass the map class in InheritableThreadLocal.
* This technique is preferable to the alternative of embedding
* instanceof tests in methods.
待子类扩展,根据父线程的值,返回子线程的值
*/
T childValue(T parentValue) {
throw new UnsupportedOperationException();
}
总结:
[color=blue]每个线程拥有一个线程本地变量ThreadLocalMap-threadLocals和一个可继承的ThreadLocalMap-inheritableThreadLocals。每个ThreadLocal关联一个threadLocalHashCode,在set设值ThreadLocal时,获取当前线程的线程本地变量ThreadLocalMap-threadLocals,如果为空,则初始化当前线程的threadLocals,
即创建一个ThreadLocalMap,并将TheadLocal的threadLocalHashCode与value的映射Entry添加到threadLocals中,如果当前线程的threadLocals不为null,则添加TheadLocal的threadLocalHashCode与value的映射Entry。get方法,首先获取当前线程的线程本地变量Map-threadLocals,如果不为空,则从Map中,获取ThreadLocal的threadLocalHashCode对应Entry,返回对应的值,如果threadLocals为null,首先初始化ThreadLocal的值,然后重新检查threadLocals是否为null,后面的与set的方法相同,就不说了。移除操作,主要是从当前线程的threadLocals移除对应的TheadLocal,并清除TheadLocal的引用。[/color]
最后我们再来看一下可继承的线程本地变量InheritableThreadLocal
//InheritableThreadLocal
package java.lang;
import java.lang.ref.*;
/**
* This class extends <tt>ThreadLocal</tt> to provide inheritance of values
* from parent thread to child thread: when a child thread is created, the
* child receives initial values for all inheritable thread-local variables
* for which the parent has values. Normally the child's values will be
* identical to the parent's; however, the child's value can be made an
* arbitrary function of the parent's by overriding the <tt>childValue</tt>
* method in this class.
*
InheritableThreadLocal继承了ThreadLocal,提供了子线程继承父线程本地变量的实现;
当子线程被创建,子线程将会拥有父线程所有可继承的线程本地变量。一般情况子线程的本地
变量值与父线程相同;如果子线程重写的父线程的childValue,将不能保证。
* <p>Inheritable thread-local variables are used in preference to
* ordinary thread-local variables when the per-thread-attribute being
* maintained in the variable (e.g., User ID, Transaction ID) must be
* automatically transmitted to any child threads that are created.
当每个线程的属性保存在一个变量中如用户ID和事务ID,如果是可继承的线程本地变量
必须自动的传给所有创建的子线程,可继承的线程本地变量优先于一般的线程变量被使用。
* @author Josh Bloch and Doug Lea
* @see ThreadLocal
* @since 1.2
*/
public class InheritableThreadLocal<T> extends ThreadLocal<T> {
/**
* Computes the child's initial value for this inheritable thread-local
* variable as a function of the parent's value at the time the child
* thread is created. This method is called from within the parent
* thread before the child is started.
在子线程创建时,初始化子线程从父线程继承的线程本地变量。这个方法在子线程启动之前,
父线程调用。跟父线程的本地变量值,返回子线程的线程本地变量值,InheritableThreadLocal为
直接继承父类的值
* <p>
* This method merely returns its input argument, and should be overridden
* if a different behavior is desired.
*
* @param parentValue the parent thread's value
* @return the child thread's initial value
*/
protected T childValue(T parentValue) {
return parentValue;
}
/**
* Get the map associated with a ThreadLocal.
*
获取线程关联ThreadLocal
* @param t the current thread
*/
ThreadLocalMap getMap(Thread t) {
return t.inheritableThreadLocals;
}
/**
* Create the map associated with a ThreadLocal.
*
创建一个线程关联ThreadLocal的Map
* @param t the current thread
* @param firstValue value for the initial entry of the table.
* @param map the map to store.
*/
void createMap(Thread t, T firstValue) {
t.inheritableThreadLocals = new ThreadLocalMap(this, firstValue);
}
}
实例:
public class ParentThread extends Thread {
void run (){
ChildThread cThread = new ChildThread()
cThread.inheritableThreadLocals = ThreadLocalMap.createInheritedMap(this.inheritableThreadLocals);
}
}
public class ChildThread extends Thread {
void run (){
...
}
}
//WeakReference
package java.lang.ref;
/**
* Weak reference objects, which do not prevent their referents from being
* made finalizable, finalized, and then reclaimed. Weak references are most
* often used to implement canonicalizing mappings.
*
* <p> Suppose that the garbage collector determines at a certain point in time
* that an object is <a href="package-summary.html#reachability">weakly
* reachable</a>. At that time it will atomically clear all weak references to
* that object and all weak references to any other weakly-reachable objects
* from which that object is reachable through a chain of strong and soft
* references. At the same time it will declare all of the formerly
* weakly-reachable objects to be finalizable. At the same time or at some
* later time it will enqueue those newly-cleared weak references that are
* registered with reference queues.
*
* @author Mark Reinhold
* @since 1.2
*/
public class WeakReference<T> extends Reference<T> {
/**
* Creates a new weak reference that refers to the given object. The new
* reference is not registered with any queue.
*
* @param referent object the new weak reference will refer to
*/
public WeakReference(T referent) {
super(referent);
}
/**
* Creates a new weak reference that refers to the given object and is
* registered with the given queue.
*
* @param referent object the new weak reference will refer to
* @param q the queue with which the reference is to be registered,
* or <tt>null</tt> if registration is not required
*/
public WeakReference(T referent, ReferenceQueue<? super T> q) {
super(referent, q);
}
}
Reference:
[img]http://dl2.iteye.com/upload/attachment/0124/2284/1475e8b3-0d02-300d-80cb-2081b0c3cdd9.png[/img]