拦截器 与 过滤器

[ 面向切面编程(AOP是Aspect Oriented Program的首字母缩写) ,我们知道,面向对象的特点是继承、多态和封装。而封装就要求将功能分散到不同的对象中去,这在软件设计中往往称为职责分配。实际上也就是说,让不同的类设计不同的方法。这样代码就分散到一个个的类中去了。这样做的好处是降低了代码的复杂程度,使类可重用。
但是人们也发现,在分散代码的同时,也增加了代码的重复性。什么意思呢?比如说,我们在两个类中,可能都需要在每个方法中做日志。按面向对象的设计方法,我们就必须在两个类的方法中都加入日志的内容。也许他们是完全相同的,但就是因为面向对象的设计让类与类之间无法联系,而不能将这些重复的代码统一起来。
也许有人会说,那好办啊,我们可以将这段代码写在一个独立的类独立的方法里,然后再在这两个类中调用。但是,这样一来,这两个类跟我们上面提到的独立的类就有耦合了,它的改变会影响这两个类。那么,有没有什么办法,能让我们在需要的时候,随意地加入代码呢?这种在运行时,动态地将代码切入到类的指定方法、指定位置上的编程思想就是面向切面的编程。
一般而言,我们管切入到指定类指定方法的代码片段称为切面,而切入到哪些类、哪些方法则叫切入点。有了AOP,我们就可以把几个类共有的代码,抽取到一个切片中,等到需要时再切入对象中去,从而改变其原有的行为。
这样看来,AOP其实只是OOP的补充而已。OOP从横向上区分出一个个的类来,而AOP则从纵向上向对象中加入特定的代码。有了AOP,OOP变得立体了。如果加上时间维度,AOP使OOP由原来的二维变为三维了,由平面变成立体了。从技术上来说,AOP基本上是通过代理机制实现的。
AOP在编程历史上可以说是里程碑式的,对OOP编程是一种十分有益的补充。 ]
过滤器,是在java web中,你传入的request,response提前过滤掉一些信息,或者提前设置一些参数,然后再传入servlet或者struts的 action进行业务逻辑,比如过滤掉非法url(不是login.do的地址请求,如果用户没有登陆都过滤掉),或者在传入servlet或者 struts的action前统一设置字符集,或者去除掉一些非法字符
拦截器,是在面向切面编程的就是在你的service或者一个方法,前调用一个方法,或者在方法后调用一个方法比如动态代理就是拦截器的简单实现,在你调用方法前打印出字符串(或者做其它业务逻辑的操作),也可以在你调用方法后打印出字符串,甚至在你抛出异常的时候做业务逻辑的操作。是基于JAVA的反射机制。


拦截器与过滤器的区别 :
a.拦截器是基于java的反射机制的,而过滤器是基于函数回调。
b.拦截器不依赖与servlet容器,过滤器依赖与servlet容器。
c.拦截器只能对action请求起作用,而过滤器则可以对几乎所有的请求起作用。
d.拦截器可以访问action上下文、值栈里的对象,而过滤器不能访问。
e.在action的生命周期中,拦截器可以多次被调用,而过滤器只能在容器初始化时被调用一次
同步定位地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位环境建模中的各类不确定性。 Matlab作为工程计算数据可视化领域广泛应用的数学软件,具备丰富的内置函数专用工具箱,尤其适用于算法开发仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发验证周期。 本次“SLAM-基于Matlab的同步定位建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达视觉传感器)的建立应用、特征匹配数据关联方法、滤波器设计(如扩展卡尔曼滤波粒子滤波)、图优化框架(如GTSAMCeres Solver)以及路径规划避障策略。通过项目实践,参者可深入掌握SLAM算法的实现原理,并提升相关算法的设计调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化可操作化,显著降低了学习门槛,提升了学习效率质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值