MongoDB小结34 - 聚合管道【$group】

本文介绍了MongoDB中使用aggregate函数进行数据分组与聚合的方法。通过两个具体实例展示了如何根据特定字段进行分组,并计算出总价、平均数量等统计数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先分组,再合并

1.例子

{ "_id" : { "month" : 3, "day" : 15, "year" : 2014 }, "totalPrice" : 50, "averageQuantity" : 10, "count" : 1 }
{ "_id" : { "month" : 4, "day" : 4, "year" : 2014 }, "totalPrice" : 200, "averageQuantity" : 15, "count" : 2 }
{ "_id" : { "month" : 3, "day" : 1, "year" : 2014 }, "totalPrice" : 40, "averageQuantity" : 1.5, "count" : 2 }
_id 为分组依据,_id 为null,及不分组,直接合并。
合并依据:
键 totalPrice 保存 键 price 和 键 quantity 值 的乘积 的和
键averageQuantity 保存 键 quantity 的值的平均值

键 count 作统计

db.sales.aggregate( [ { $group : { _id : null, totalPrice: { $sum: { $multiply: [ "$price", "$quantity" ] } }, averageQuantity: { $avg: "$quantity" }, count: { $sum: 1 } } } ] )
结果
 { "_id" : null, "totalPrice" : 290, "averageQuantity" : 8.6, "count" : 5 }

2.再看一例

 { "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-03-01T08:00:00Z") }
 { "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-03-01T09:00:00Z") }
 { "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-03-15T09:00:00Z") }
 { "_id" : 4, "item" : "xyz", "price" : 5, "quantity" : 20, "date" : ISODate("2014-04-04T11:21:39.736Z") }
 { "_id" : 5, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-04-04T21:23:13.331Z") }
咱们依据 键 item 分组
db.sales.aggregate( [ { $group : { _id : "$item" } } ] )
结果
 { "_id" : "xyz" }
 { "_id" : "jkl" }
 { "_id" : "abc" }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值