题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2013
迭代的方法很简单,直接按题目意思来就可以了。
计算机的鼻祖本来就是数学家,自然优化程序的最终方法还是要回归到数学上。<span style="font-size:18px;">for (s = n = 1; n &lt; 30; n++)s = (s + 1) * 2;</span><span style="font-size:18px;"><br /></span><span style="font-size:18px;"><br /></span>
本题很容易得到它的递推方程:
于是我们得到:f(1) = 1;f(n) = [f(n-1) + 1] × 2;
对于这种推断题还有另外一种递推方法,虽然对于本题来说很麻烦。但有时候它是无可替代的。f(n) + 2 = 2 × [f(n-1) + 2] f(1) + 2 = 3 => f(n) + 2 = 3 × 2n-1 => f(n) = 3 × 2n-1 - 2
这时候,我们需要分类讨论了:f(1) = 1; f(n) = 2f(n-1) + 2 = f(n-1) + 2f(n-2) + 4; => f(n) + f(n-1) + 4 = 2 × [f(n-1) + f(n+2) + 4]; 设 g(n) = f(n) + f(n-1) + 4; 则 g(n) = 2 × g(n-1); g(2) = f(2) + f(1) + 4 = 9; ∴g(n) = 9 × 2n-2 (n > 1) ∴f(n) + f(n-1) = 9 × 2n-2 - 4 ① f(n-1) + f(n-2) = 9 × 2n-3 - 4 ② ┋ f(3) + f(2) = 9 × 2 - 4 f(2) + f(1) = 9 - 4 把①式减去②式得 f(n) = 9 × 2n-3 + f(n-2) f(n-2) = 9 × 2n-5 + f(n-4) ┋
- n为奇数
f(n) = 9 × 2n-3 + f(n-2) f(n-2) = 9 × 2n-5 + f(n-4) ┋ f(5) = 9 × 22 + f(3) f(3) = 9 + f(1) f(1) = 1 从下往上迭代,得: f(n) = 9 × (2n-3 + 2n-5 + ... + 22 + 1) + 1 => f(n) = 9 × (1 - 4(n-1)/2) ÷ (1 - 4) + 1 => f(n) = 3 × 2n - 1 - 2
- n为偶数
f(n) = 9 × 2n-3 + f(n-2) f(n-2) = 9 × 2n-5 + f(n-4) ┋ f(4) = 9 × 21 + f(2) f(2) = 4 从下往上迭代,得: f(n) = 9 × (2n-3 + 2n-5 + ... + 21) + 4 => f(n) = 9 × 2 × (1 - 4(n-2)/2) ÷ (1 - 4) + 4 => f(n) = 3 × 2n - 1 - 2
现在我们就得到了这道题目的公式了: f(n) = 3 × 2 n - 1 - 2
#include <math.h>
#include <stdio.h>
int main(void)
{
int n;
while (scanf("%d", &n) != EOF)
printf("%.0f\n", 3 * pow(2, n - 1) - 2);
return 0;
}