固体模拟简介(Introduction to solid)

物理模拟与实时物理类算法
本文探讨物理模拟中固体对象的分类(刚体、软体、布料),重点介绍有限单元法及其在实时应用中的简化处理方法,比较质量弹簧网格与FEMMesh在模拟中的优劣,并详细阐述刚体模拟在游戏物理引擎中的重要性。

在物理模拟中,固体对象通常分为1)刚体(Rigid body),2)软体(Soft body),3)布料(Cloth)。从底层的物理原理来看,这三者并没有什么区别——纯刚体在自然界中是无法找到的,所有物体在某种情况下都是可形变的,布料其实是一个三维的软体,因为它是有一定厚度的。但从算法和模拟的角度来看,把这三种对象分开是非常有意义的;比如假设石头是无限硬的刚体并不会造成视觉上的错误,反而简化了处理和模拟此类物体,又比如将布料模拟成2d的物体而不是3d的物体将会增加模拟效率,并且能够减小内存消耗。

有限单元法(Finite Element Methods)是最广泛的应用于固体模拟的技术之一。这个方法将一般的偏微分方程转化为线性方程组系统,通常这些方程组是非线性的。求解非线性方程组对于实时的模拟来说当然太慢了,在实际的应用中通常使用的是线性的近似,特别是变形非常小的情况,比如建筑物的分析。但是,对于大变形的物体,这样的处理方式得到的效果就会非常的假,一个能够提速FEM的方法就是将变形分为线性变换和旋转变换两部分分别进行求解。

在实时应用中,固体通常并不是用FEM Mesh来处理,而是被表示为质量弹簧网格(Mass Spring Networks)。质量弹簧网格相比于FEM更易于编程,并且运行起来会更快,同时也会有一些缺点 - 很难调整,当网格空间到0的时候很难得到真实的收敛解,不过在实时模拟的场景中,这些都不是很严重的问题。布料大部分的时候都是用质量弹簧网格系统来模拟的,因为这样的网格用2d结构的布料非常简单。在FEM框架中,特殊的可以表示弯曲的单元可以用于布料的模拟,但是没必要那么复杂,并且也太慢了。由于模拟应当是无条件稳定的,简单的显示积分不能保证,而复杂的隐式积分很难去用代码实现,跑起来也很慢,还要考虑到阻尼。

当物体被假设为一个刚体的时候,它的状态就可以被描述为一个质点+朝向+线速度+角速度。这样就可以模拟大量的刚性的物体。刚体的模拟在每一个游戏的物理引擎中都是极其重要的一个部分,因为大部分游戏中的物体都可以被当作刚性的。


原文

Real Time PhysicClass -http://www.matthiasmueller.info/realtimephysics/

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值