Dijkstra算法

本文详细介绍Dijkstra算法原理及实现步骤,适用于求解无负权边的最短路径问题。通过实例展示算法流程,并提供C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求解最短路问题:

***注意***:用Dijkstra算法求解图论中的最短路径问题的前提是保证图中没有负边,否则,不能用次算法正确求解.

因为Dijkstra算法在计算最短路径时,不会因为负边的出现而更新已经计算过的顶点的路径长度,这样一来,在存在负边的图中,就可能有某些顶点最终计算出的路径长度不是最短路径.


----------------------------分割线------------------------------------

(声明:以下部分来源于www.wutianqi.com)


Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。


Dijkstra算法的迭代过程:


主要好好理解上图.

#include <iostream>
using namespace std;
 
const int maxnum = 100;
const int maxint = 999999;
 
// 各数组都从下标1开始
int dist[maxnum];     // 表示当前点到源点的最短路径长度
int prev[maxnum];     // 记录当前点的前一个结点
int c[maxnum][maxnum];   // 记录图的两点间路径长度
int n, line;             // 图的结点数和路径数
 
// n -- n nodes
// v -- the source node
// dist[] -- the distance from the ith node to the source node
// prev[] -- the previous node of the ith node
// c[][] -- every two nodes' distance
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
	bool s[maxnum];    // 判断是否已存入该点到S集合中
	for(int i=1; i<=n; ++i)
	{
		dist[i] = c[v][i];
		s[i] = 0;     // 初始都未用过该点
		if(dist[i] == maxint)
			prev[i] = 0;
		else
			prev[i] = v;
	}
	dist[v] = 0;
	s[v] = 1;
 
	// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
	// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
         // 注意是从第二个节点开始,第一个为源点
	for(int i=2; i<=n; ++i)
	{
		int tmp = maxint;
		int u = v;
		// 找出当前未使用的点j的dist[j]最小值
		for(int j=1; j<=n; ++j)
			if((!s[j]) && dist[j]<tmp)
			{
				u = j;              // u保存当前邻接点中距离最小的点的号码
				tmp = dist[j];
			}
		s[u] = 1;    // 表示u点已存入S集合中
 
		// 更新dist
		for(int j=1; j<=n; ++j)
			if((!s[j]) && c[u][j]<maxint)
			{
				int newdist = dist[u] + c[u][j];
				if(newdist < dist[j])
				{
					dist[j] = newdist;
					prev[j] = u;
				}
			}
	}
}
 
// 查找从源点v到终点u的路径,并输出
void searchPath(int *prev,int v, int u)
{
	int que[maxnum];
	int tot = 1;
	que[tot] = u;
	tot++;
	int tmp = prev[u];
	while(tmp != v)
	{
		que[tot] = tmp;
		tot++;
		tmp = prev[tmp];
	}
	que[tot] = v;
	for(int i=tot; i>=1; --i)
		if(i != 1)
			cout << que[i] << " -> ";
		else
			cout << que[i] << endl;
}
 
int main()
{
	freopen("input.txt", "r", stdin);
	// 各数组都从下标1开始
 
	// 输入结点数
	cin >> n;
	// 输入路径数
	cin >> line;
	int p, q, len;          // 输入p, q两点及其路径长度
 
	// 初始化c[][]为maxint
	for(int i=1; i<=n; ++i)
		for(int j=1; j<=n; ++j)
			c[i][j] = maxint;
 
	for(int i=1; i<=line; ++i)  
	{
		cin >> p >> q >> len;
		if(len < c[p][q])       // 有重边
		{
			c[p][q] = len;      // p指向q
			c[q][p] = len;      // q指向p,这样表示无向图
		}
	}
 
	for(int i=1; i<=n; ++i)
		dist[i] = maxint;
	for(int i=1; i<=n; ++i)
	{
		for(int j=1; j<=n; ++j)
			printf("%8d", c[i][j]);
		printf("\n");
	}
 
	Dijkstra(n, 1, dist, prev, c);
 
	// 最短路径长度
	cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
 
	// 路径
	cout << "源点到最后一个顶点的路径为: ";
	searchPath(prev, 1, n);
}

输入数据:
5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
输出数据:
999999 10 999999 30 100
10 999999 50 999999 999999
999999 50 999999 20 10
30 999999 20 999999 60
100 999999 10 60 999999
源点到最后一个顶点的最短路径长度: 60
源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5

最后给出两道题目练手,都是直接套用模版就OK的:
1.HDOJ 1874 畅通工程续
http://www.wutianqi.com/?p=1894

2.HDOJ 2544 最短路
http://www.wutianqi.com/?p=1892


### Dijkstra算法简介 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,适用于带权重的有向图或无向中的最短路径计算[^1]。该算法的核心思想是从起始节点出发,逐步扩展已知距离最小的未访问节点,并更新其邻居节点的距离。 --- ### Dijkstra算法实现 以下是基于优先队列优化版本的Dijkstra算法实现: #### Python代码示例 ```python import heapq def dijkstra(graph, start): # 初始化距离字典,默认值为无穷大 distances = {node: float('inf') for node in graph} distances[start] = 0 # 使用堆来存储待处理节点及其当前距离 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) # 如果当前距离大于记录的距离,则跳过此节点 if current_distance > distances[current_node]: continue # 遍历相邻节点并更新距离 for neighbor, weight in graph[current_node].items(): distance = current_distance + weight # 更新更短的距离 if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` 上述代码中,`graph` 是一个邻接表形式表示的加权,其中键是节点名称,值是一个字典,描述与其相连的其他节点以及边的权重[^2]。 --- ### Dijkstra算法的应用场景 1. **网络路由协议** 在计算机网络中,路由器可以利用Dijkstra算法找到到达目标地址的最佳路径,从而提高数据传输效率[^3]。 2. **地导航系统** 地服务提供商(如Google Maps)通过Dijkstra算法或其他改进版算法快速计算两点之间的最短路径,提供给用户最佳行驶路线[^4]。 3. **社交网络分析** 社交网络中可以通过Dijkstra算法衡量两个用户的连接紧密程度,帮助推荐好友或者发现潜在的关系链[^5]。 4. **物流配送规划** 物流公司使用类似的最短路径算法优化货物运输线路,减少成本和时间消耗[^6]。 --- ### 示例说明 假设有一个简单的加权如下所示: ```plaintext A --(1)-- B --(2)-- C | | | (4) (1) (3) | | | D -------- E ------- F (1) ``` 对应的Python输入格式为: ```python graph = { 'A': {'B': 1, 'D': 4}, 'B': {'A': 1, 'E': 1, 'C': 2}, 'C': {'B': 2, 'F': 3}, 'D': {'A': 4, 'E': 1}, 'E': {'D': 1, 'B': 1, 'F': 1}, 'F': {'E': 1, 'C': 3} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 运行结果将是各节点到起点 `A` 的最短路径长度: ```plaintext {'A': 0, 'B': 1, 'C': 3, 'D': 4, 'E': 2, 'F': 3} ``` 这表明从节点 A 到其余各个节点的最短路径分别为:B 距离为 1;C 距离为 3;等等[^7]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值