clc; close all;
X = imread('1.jpg');
X=rgb2gray(X);
Y=X;
Y = imnoise(Y, 'salt & pepper');%添加椒盐噪声,也可以改成其他噪声
A=fspecial('average',3); %生成系统预定义的3X3滤波器
Z=filter2(A,Y)/255; %均值滤波
%Z=medfilt2(Y,[3,3]);%中值滤波
%A=fspecial('gaussian'); %高斯滤波卷积核
%Z=filter2(A,Y)/255; %用生成的高斯序列进行滤波
figure;
subplot(1, 3, 1); imshow(X); title('原图像');
subplot(1, 3, 2); imshow(Y); title('加噪声图像');
subplot(1, 3, 3); imshow(Z); title('滤波后图像');
X = double(X);
Z = double(Z);
D = Z-X;
MSE = sum(D(:).*D(:))/numel(Z);%均方根误差MSE
PSNR = 10*log10(255^2/MSE);%峰值信噪比
MAE=mean(mean(abs(D)));%平均绝对误差
w = fspecial('gaussian', 11, 1.5); %window 加窗
K(1) = 0.01;
K(2) = 0.03;
L = 255;
Z = double(Z);
X = double(X);
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
w = w/sum(sum(w));
ua = filter2(w, Z, 'valid');%对窗口内并没有进行平均处理,而是与高斯卷积,
ub = filter2(w, X, 'valid'); % 类似加权平均
ua_sq = ua.*ua;
ub_sq = ub.*ub;
ua_ub = ua.*ub;
siga_sq
图像的:均方根误差MSE、峰值信噪比PSNR、平均绝对误差MAE、结构相似性SSIM
最新推荐文章于 2025-06-20 16:07:29 发布