【Leetcode | 1】3. 无重复字符的最长子串

利用HashMap求最长无重复子串长度
博客介绍了利用HashMap求最长无重复子串长度的方法。建立字符和其最后出现位置的映射,定义变量res和left,遍历字符串,根据字符在HashMap中的情况更新left,通过i - left计算窗口长度更新res,并对关键条件进行了解释,还举例说明。

这里我们可以建立一个HashMap,建立每个字符和其最后出现位置之间的映射,然后我们需要定义两个变量res和left,其中res用来记录最长无重复子串的长度,left指向该无重复子串左边的起始位置的前一个,由于是前一个,所以初始化就是-1,然后我们遍历整个字符串,对于每一个遍历到的字符,如果该字符已经在HashMap中存在了,并且如果其映射值大于left的话,那么更新left为当前映射值。然后映射值更新为当前坐标i,这样保证了left始终为当前边界的前一个位置,然后计算窗口长度的时候,直接用i-left即可,用来更新结果res。

这里解释下程序中那个if条件语句中的两个条件m.count(s[i]) && m[s[i]] > left,因为一旦当前字符s[i]在HashMap已经存在映射,说明当前的字符已经出现过了,而若m[s[i]] > left 成立,说明之前出现过的字符在我们的窗口内,那么如果要加上当前这个重复的字符,就要移除之前的那个,所以我们让left赋值为m[s[i]],由于left是窗口左边界的前一个位置(这也是left初始化为-1的原因,因为窗口左边界是从0开始遍历的),所以相当于已经移除出滑动窗口了。举一个最简单的例子"aa",当i=0时,我们建立了a->0的映射,并且此时结果res更新为1,那么当i=1的时候,我们发现a在HashMap中,并且映射值0大于left的-1,所以此时left更新为0,映射对更新为a->1,那么此时i-left还为1,不用更新结果res,那么最终结果res还为1,正确,代码如下:

class Solution { // adaad
public:
    int lengthOfLongestSubstring(string s) 
    {
        int res = 0, left = -1, n = s.size();
        unordered_map<int, int> m;
        for (int i = 0; i < n; ++i) 
        {
            if (m.count(s[i]) && m[s[i]] > left) 
            {
                left = m[s[i]];  
            }
            m[s[i]] = i;
            res = max(res, i - left);            
        }
        return res;
    }
};

 

MATLAB主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性内容概要:本文主要介绍了一种在MATLAB环境下实现的主动噪声和振动控制算法,该算法针对较大的次级路径变化具有较强的鲁棒性。文中详细阐述了算法的设计原理与实现方法,重点解决了传统控制系统中因次级路径动态变化导致性能下降的问题。通过引入自适应机制和鲁棒控制策略,提升了系统在复杂环境下的稳定性和控制精度,适用于需要高精度噪声与振动抑制的实际工程场景。此外,文档还列举了多个MATLAB仿真实例及相关科研技术服务内容,涵盖信号处理、智能优化、机器学习等多个交叉领域。; 适合人群:具备一定MATLAB编程基础和控制系统理论知识的科研人员及工程技术人员,尤其适合从事噪声与振动控制、信号处理、自动化等相关领域的研究生和工程师。; 使用场景及目标:①应用于汽车、航空航天、精密仪器等对噪声和振动敏感的工业领域;②用于提升现有主动控制系统对参数变化的适应能力;③为相关科研项目提供算法验证与仿真平台支持; 阅读建议:建议读者结合提供的MATLAB代码进行仿真实验,深入理解算法在不同次级路径条件下的响应特性,并可通过调整控制参数进一步探究其鲁棒性边界。同时可参考文档中列出的相关技术案例拓展应用场景。
### 解法分析 解决“无重复字符长子”问题的高效方法是使用**滑动窗口**技巧。该方法通过维护一个窗口,窗口内始终不包含重复字符。窗口的左右边界分别由两个指针控制,通过哈希表或数组记录字符近出现的位置,从而判断是否需要移动左指针以保持窗口的有效性。 #### 1. 滑动窗口法 滑动窗口法的时间复杂度为 $O(n)$,其中 $n$ 是字符的长度。它通过单次遍历字符,动态调整窗口的左右边界,从而找出无重复字符的子。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { vector<int> charIndex(128, -1); // 用于记录每个字符近出现的位置 int maxLen = 0; int start = 0; // 窗口的起始位置 for (int end = 0; end < s.size(); end++) { char currentChar = s[end]; if (charIndex[currentChar] >= start) { // 如果当前字符已经出现在窗口内,则更新窗口的起始位置 start = charIndex[currentChar] + 1; } charIndex[currentChar] = end; // 更新字符的位置 maxLen = max(maxLen, end - start + 1); // 计算当前窗口长度 } return maxLen; } }; ``` #### 2. 使用哈希表 除了使用固定大小的数组记录字符位置,也可以使用哈希表(`unordered_map`)来动态存储字符的位置信息。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { unordered_map<char, int> charMap; int maxLen = 0; int start = 0; for (int end = 0; end < s.size(); end++) { if (charMap.count(s[end])) { // 如果字符已经出现过,并且其位置在窗口内,则更新窗口起始位置 start = max(start, charMap[s[end]] + 1); } charMap[s[end]] = end; // 更新字符的位置 maxLen = max(maxLen, end - start + 1); // 更新大长度 } return maxLen; } }; ``` #### 3. 使用布尔数组 另一种方法是使用布尔数组记录字符是否已经在当前窗口中出现,这种方法适用于字符集较小的情况(如 ASCII)。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { bool used[128] = {false}; int maxLen = 0; int left = 0, right = 0; while (right < s.size()) { if (used[s[right]]) { // 如果当前字符已存在,则移动左指针并更新数组 used[s[left++]] = false; } else { used[s[right++]] = true; maxLen = max(maxLen, right - left); } } return maxLen; } }; ``` ### 总结 - **滑动窗口法**是优解法,时间复杂度为 $O(n)$,空间复杂度为 $O(m)$($m$ 为字符集大小)。 - **哈希表**方法灵活性更强,适用于字符集较大的情况。 - **布尔数组**方法适用于字符集较小的情况,实现简单且效率较高。 这些方法都可以通过 LeetCode 测试用例,并且在性能上表现良好。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值