matching_to_many_images运行错误

本文介绍如何解决OpenCV示例程序matching_to_many_images.cpp中的createDetectorDescriptorMatcher函数返回false的问题。通过添加初始化代码及引入特定头文件,确保程序能够正常运行。

运行环境OpenCV2.4.8+VS2010.

新建工程,添加运行程序,将OpenCV自带的例子程序matching_to_many_images.cpp添加到工程中,编译无误,运行发现createDetectorDescriptorMatcher函数返回false,导致程序不能执行,调试发现未初始化匹配环境,在createDetectorDescriptorMatcher函数之前添加初始化代码:

if (!initModule_nonfree())
{
cout<<"initModule_nonfree failed"<<endl;
return -1;
}

在引用头文件处添加

#include "opencv2/nonfree/nonfree.hpp"

编译运行OK

from data import COCODetection, get_label_map, MEANS, COLORS from yolact import Yolact from utils.augmentations import BaseTransform, FastBaseTransform, Resize from utils.functions import MovingAverage, ProgressBar from layers.box_utils import jaccard, center_size, mask_iou from utils import timer from utils.functions import SavePath from layers.output_utils import postprocess, undo_image_transformation import pycocotools from data import cfg, set_cfg, set_dataset import numpy as np import torch import torch.backends.cudnn as cudnn from torch.autograd import Variable import argparse import time import random import cProfile import pickle import json import os from collections import defaultdict from pathlib import Path from collections import OrderedDict from PIL import Image import matplotlib.pyplot as plt import cv2 def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def parse_args(argv=None): parser = argparse.ArgumentParser( description='YOLACT COCO Evaluation') parser.add_argument('--trained_model', default='weights/yolact_base_105_101798_interrupt.pth', type=str, help='Trained state_dict file path to open. If "interrupt", this will open the interrupt file.') parser.add_argument('--top_k', default=5, type=int, help='Further restrict the number of predictions to parse') parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to evaulate model') parser.add_argument('--fast_nms', default=True, type=str2bool, help='Whether to use a faster, but not entirely correct version of NMS.') parser.add_argument('--cross_class_nms', default=False, type=str2bool, help='Whether compute NMS cross-class or per-class.') parser.add_argument('--display_masks', default=True, type=str2bool, help='Whether or not to display masks over bounding boxes') parser.add_argument('--display_bboxes', default=True, type=str2bool, help='Whether or not to display bboxes around masks') parser.add_argument('--display_text', default=True, type=str2bool, help='Whether or not to display text (class [score])') parser.add_argument('--display_scores', default=True, type=str2bool, help='Whether or not to display scores in addition to classes') parser.add_argument('--display', dest='display', action='store_true', help='Display qualitative results instead of quantitative ones.') parser.add_argument('--shuffle', dest='shuffle', action='store_true', help='Shuffles the images when displaying them. Doesn\'t have much of an effect when display is off though.') parser.add_argument('--ap_data_file', default='results/ap_data.pkl', type=str, help='In quantitative mode, the file to save detections before calculating mAP.') parser.add_argument('--resume', dest='resume', action='store_true', help='If display not set, this resumes mAP calculations from the ap_data_file.') parser.add_argument('--max_images', default=-1, type=int, help='The maximum number of images from the dataset to consider. Use -1 for all.') parser.add_argument('--output_coco_json', dest='output_coco_json', action='store_true', help='If display is not set, instead of processing IoU values, this just dumps detections into the coco json file.') parser.add_argument('--bbox_det_file', default='results/bbox_detections.json', type=str, help='The output file for coco bbox results if --coco_results is set.') parser.add_argument('--mask_det_file', default='results/mask_detections.json', type=str, help='The output file for coco mask results if --coco_results is set.') parser.add_argument('--config', default=None, help='The config object to use.') parser.add_argument('--output_web_json', dest='output_web_json', action='store_true', help='If display is not set, instead of processing IoU values, this dumps detections for usage with the detections viewer web thingy.') parser.add_argument('--web_det_path', default='web/dets/', type=str, help='If output_web_json is set, this is the path to dump detections into.') parser.add_argument('--no_bar', dest='no_bar', action='store_true', help='Do not output the status bar. This is useful for when piping to a file.') parser.add_argument('--display_lincomb', default=False, type=str2bool, help='If the config uses lincomb masks, output a visualization of how those masks are created.') parser.add_argument('--benchmark', default=False, dest='benchmark', action='store_true', help='Equivalent to running display mode but without displaying an image.') parser.add_argument('--no_sort', default=False, dest='no_sort', action='store_true', help='Do not sort images by hashed image ID.') parser.add_argument('--seed', default=None, type=int, help='The seed to pass into random.seed. Note: this is only really for the shuffle and does not (I think) affect cuda stuff.') parser.add_argument('--mask_proto_debug', default=False, dest='mask_proto_debug', action='store_true', help='Outputs stuff for scripts/compute_mask.py.') parser.add_argument('--no_crop', default=False, dest='crop', action='store_false', help='Do not crop output masks with the predicted bounding box.') parser.add_argument('--image', default=None, type=str, help='A path to an image to use for display.') parser.add_argument('--images', default='E:/yolact-master/coco/images/train2017', type=str, help='Input and output paths separated by a colon.') parser.add_argument('--video', default=None, type=str, help='A path to a video to evaluate on. Passing in a number will use that index webcam.') parser.add_argument('--video_multiframe', default=1, type=int, help='The number of frames to evaluate in parallel to make videos play at higher fps.') parser.add_argument('--score_threshold', default=0.15, type=float, help='Detections with a score under this threshold will not be considered. This currently only works in display mode.') parser.add_argument('--dataset', default=None, type=str, help='If specified, override the dataset specified in the config with this one (example: coco2017_dataset).') parser.add_argument('--detect', default=False, dest='detect', action='store_true', help='Don\'t evauluate the mask branch at all and only do object detection. This only works for --display and --benchmark.') parser.add_argument('--display_fps', default=False, dest='display_fps', action='store_true', help='When displaying / saving video, draw the FPS on the frame') parser.add_argument('--emulate_playback', default=False, dest='emulate_playback', action='store_true', help='When saving a video, emulate the framerate that you\'d get running in real-time mode.') parser.set_defaults(no_bar=False, display=False, resume=False, output_coco_json=False, output_web_json=False, shuffle=False, benchmark=False, no_sort=False, no_hash=False, mask_proto_debug=False, crop=True, detect=False, display_fps=False, emulate_playback=False) global args args = parser.parse_args(argv) if args.output_web_json: args.output_coco_json = True if args.seed is not None: random.seed(args.seed) iou_thresholds = [x / 100 for x in range(50, 100, 5)] coco_cats = {} # Call prep_coco_cats to fill this coco_cats_inv = {} color_cache = defaultdict(lambda: {}) def prep_display(dets_out, img, h, w, undo_transform=True, class_color=False, mask_alpha=0.45, fps_str=''): """ Note: If undo_transform=False then im_h and im_w are allowed to be None. """ if undo_transform: img_numpy = undo_image_transformation(img, w, h) img_gpu = torch.Tensor(img_numpy).cuda() else: img_gpu = img / 255.0 h, w, _ = img.shape with timer.env('Postprocess'): save = cfg.rescore_bbox cfg.rescore_bbox = True t = postprocess(dets_out, w, h, visualize_lincomb = args.display_lincomb, crop_masks = args.crop, score_threshold = args.score_threshold) cfg.rescore_bbox = save with timer.env('Copy'): idx = t[1].argsort(0, descending=True)[:args.top_k] if cfg.eval_mask_branch: # Masks are drawn on the GPU, so don't copy masks = t[3][idx] classes, scores, boxes = [x[idx].cpu().numpy() for x in t[:3]] num_dets_to_consider = min(args.top_k, classes.shape[0]) for j in range(num_dets_to_consider): if scores[j] < args.score_threshold: num_dets_to_consider = j break # Quick and dirty lambda for selecting the color for a particular index # Also keeps track of a per-gpu color cache for maximum speed def get_color(j, on_gpu=None): global color_cache color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS) if on_gpu is not None and color_idx in color_cache[on_gpu]: return color_cache[on_gpu][color_idx] else: color = COLORS[color_idx] if not undo_transform: # The image might come in as RGB or BRG, depending color = (color[2], color[1], color[0]) if on_gpu is not None: color = torch.Tensor(color).to(on_gpu).float() / 255. color_cache[on_gpu][color_idx] = color return color # First, draw the masks on the GPU where we can do it really fast # Beware: very fast but possibly unintelligible mask-drawing code ahead # I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice if args.display_masks and cfg.eval_mask_branch and num_dets_to_consider > 0: # After this, mask is of size [num_dets, h, w, 1] masks = masks[:num_dets_to_consider, :, :, None] # Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1]) colors = torch.cat([get_color(j, on_gpu=img_gpu.device.index).view(1, 1, 1, 3) for j in range(num_dets_to_consider)], dim=0) masks_color = masks.repeat(1, 1, 1, 3) * colors * mask_alpha # This is 1 everywhere except for 1-mask_alpha where the mask is inv_alph_masks = masks * (-mask_alpha) + 1 # I did the math for this on pen and paper. This whole block should be equivalent to: # for j in range(num_dets_to_consider): # img_gpu = img_gpu * inv_alph_masks[j] + masks_color[j] masks_color_summand = masks_color[0] if num_dets_to_consider > 1: inv_alph_cumul = inv_alph_masks[:(num_dets_to_consider-1)].cumprod(dim=0) masks_color_cumul = masks_color[1:] * inv_alph_cumul masks_color_summand += masks_color_cumul.sum(dim=0) img_gpu = img_gpu * inv_alph_masks.prod(dim=0) + masks_color_summand if args.display_fps: # Draw the box for the fps on the GPU font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize(fps_str, font_face, font_scale, font_thickness)[0] img_gpu[0:text_h+8, 0:text_w+8] *= 0.6 # 1 - Box alpha # Then draw the stuff that needs to be done on the cpu # Note, make sure this is a uint8 tensor or opencv will not anti alias text for whatever reason img_numpy = (img_gpu * 255).byte().cpu().numpy() if args.display_fps: # Draw the text on the CPU text_pt = (4, text_h + 2) text_color = [255, 255, 255] cv2.putText(img_numpy, fps_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA) if num_dets_to_consider == 0: return img_numpy if args.display_text or args.display_bboxes: for j in reversed(range(num_dets_to_consider)): x1, y1, x2, y2 = boxes[j, :] color = get_color(j) score = scores[j] if args.display_bboxes: cv2.rectangle(img_numpy, (x1, y1), (x2, y2), color, 1) if args.display_text: _class = cfg.dataset.class_names[classes[j]] text_str = '%s: %.2f' % (_class, score) if args.display_scores else _class font_face = cv2.FONT_HERSHEY_DUPLEX font_scale = 0.6 font_thickness = 1 text_w, text_h = cv2.getTextSize(text_str, font_face, font_scale, font_thickness)[0] text_pt = (x1, y1 - 3) text_color = [255, 255, 255] cv2.rectangle(img_numpy, (x1, y1), (x1 + text_w, y1 - text_h - 4), color, -1) cv2.putText(img_numpy, text_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA) return img_numpy def prep_benchmark(dets_out, h, w): with timer.env('Postprocess'): t = postprocess(dets_out, w, h, crop_masks=args.crop, score_threshold=args.score_threshold) with timer.env('Copy'): classes, scores, boxes, masks = [x[:args.top_k] for x in t] if isinstance(scores, list): box_scores = scores[0].cpu().numpy() mask_scores = scores[1].cpu().numpy() else: scores = scores.cpu().numpy() classes = classes.cpu().numpy() boxes = boxes.cpu().numpy() masks = masks.cpu().numpy() with timer.env('Sync'): # Just in case torch.cuda.synchronize() def prep_coco_cats(): """ Prepare inverted table for category id lookup given a coco cats object. """ for coco_cat_id, transformed_cat_id_p1 in get_label_map().items(): transformed_cat_id = transformed_cat_id_p1 - 1 coco_cats[transformed_cat_id] = coco_cat_id coco_cats_inv[coco_cat_id] = transformed_cat_id def get_coco_cat(transformed_cat_id): """ transformed_cat_id is [0,80) as indices in cfg.dataset.class_names """ return coco_cats[transformed_cat_id] def get_transformed_cat(coco_cat_id): """ transformed_cat_id is [0,80) as indices in cfg.dataset.class_names """ return coco_cats_inv[coco_cat_id] class Detections: def __init__(self): self.bbox_data = [] self.mask_data = [] def add_bbox(self, image_id:int, category_id:int, bbox:list, score:float): """ Note that bbox should be a list or tuple of (x1, y1, x2, y2) """ bbox = [bbox[0], bbox[1], bbox[2]-bbox[0], bbox[3]-bbox[1]] # Round to the nearest 10th to avoid huge file sizes, as COCO suggests bbox = [round(float(x)*10)/10 for x in bbox] self.bbox_data.append({ 'image_id': int(image_id), 'category_id': get_coco_cat(int(category_id)), 'bbox': bbox, 'score': float(score) }) def add_mask(self, image_id:int, category_id:int, segmentation:np.ndarray, score:float): """ The segmentation should be the full mask, the size of the image and with size [h, w]. """ rle = pycocotools.mask.encode(np.asfortranarray(segmentation.astype(np.uint8))) rle['counts'] = rle['counts'].decode('ascii') # json.dump doesn't like bytes strings self.mask_data.append({ 'image_id': int(image_id), 'category_id': get_coco_cat(int(category_id)), 'segmentation': rle, 'score': float(score) }) def dump(self): dump_arguments = [ (self.bbox_data, args.bbox_det_file), (self.mask_data, args.mask_det_file) ] for data, path in dump_arguments: with open(path, 'w') as f: json.dump(data, f) def dump_web(self): """ Dumps it in the format for my web app. Warning: bad code ahead! """ config_outs = ['preserve_aspect_ratio', 'use_prediction_module', 'use_yolo_regressors', 'use_prediction_matching', 'train_masks'] output = { 'info' : { 'Config': {key: getattr(cfg, key) for key in config_outs}, } } image_ids = list(set([x['image_id'] for x in self.bbox_data])) image_ids.sort() image_lookup = {_id: idx for idx, _id in enumerate(image_ids)} output['images'] = [{'image_id': image_id, 'dets': []} for image_id in image_ids] # These should already be sorted by score with the way prep_metrics works. for bbox, mask in zip(self.bbox_data, self.mask_data): image_obj = output['images'][image_lookup[bbox['image_id']]] image_obj['dets'].append({ 'score': bbox['score'], 'bbox': bbox['bbox'], 'category': cfg.dataset.class_names[get_transformed_cat(bbox['category_id'])], 'mask': mask['segmentation'], }) with open(os.path.join(args.web_det_path, '%s.json' % cfg.name), 'w') as f: json.dump(output, f) def _mask_iou(mask1, mask2, iscrowd=False): with timer.env('Mask IoU'): ret = mask_iou(mask1, mask2, iscrowd) return ret.cpu() def _bbox_iou(bbox1, bbox2, iscrowd=False): with timer.env('BBox IoU'): ret = jaccard(bbox1, bbox2, iscrowd) return ret.cpu() def prep_metrics(ap_data, dets, img, gt, gt_masks, h, w, num_crowd, image_id, detections:Detections=None): """ Returns a list of APs for this image, with each element being for a class """ if not args.output_coco_json: with timer.env('Prepare gt'): gt_boxes = torch.Tensor(gt[:, :4]) gt_boxes[:, [0, 2]] *= w gt_boxes[:, [1, 3]] *= h gt_classes = list(gt[:, 4].astype(int)) gt_masks = torch.Tensor(gt_masks).view(-1, h*w) if num_crowd > 0: split = lambda x: (x[-num_crowd:], x[:-num_crowd]) crowd_boxes , gt_boxes = split(gt_boxes) crowd_masks , gt_masks = split(gt_masks) crowd_classes, gt_classes = split(gt_classes) with timer.env('Postprocess'): classes, scores, boxes, masks = postprocess(dets, w, h, crop_masks=args.crop, score_threshold=args.score_threshold) if classes.size(0) == 0: return classes = list(classes.cpu().numpy().astype(int)) if isinstance(scores, list): box_scores = list(scores[0].cpu().numpy().astype(float)) mask_scores = list(scores[1].cpu().numpy().astype(float)) else: scores = list(scores.cpu().numpy().astype(float)) box_scores = scores mask_scores = scores masks = masks.view(-1, h*w).cuda() boxes = boxes.cuda() if args.output_coco_json: with timer.env('JSON Output'): boxes = boxes.cpu().numpy() masks = masks.view(-1, h, w).cpu().numpy() for i in range(masks.shape[0]): # Make sure that the bounding box actually makes sense and a mask was produced if (boxes[i, 3] - boxes[i, 1]) * (boxes[i, 2] - boxes[i, 0]) > 0: detections.add_bbox(image_id, classes[i], boxes[i,:], box_scores[i]) detections.add_mask(image_id, classes[i], masks[i,:,:], mask_scores[i]) return with timer.env('Eval Setup'): num_pred = len(classes) num_gt = len(gt_classes) mask_iou_cache = _mask_iou(masks, gt_masks) bbox_iou_cache = _bbox_iou(boxes.float(), gt_boxes.float()) if num_crowd > 0: crowd_mask_iou_cache = _mask_iou(masks, crowd_masks, iscrowd=True) crowd_bbox_iou_cache = _bbox_iou(boxes.float(), crowd_boxes.float(), iscrowd=True) else: crowd_mask_iou_cache = None crowd_bbox_iou_cache = None box_indices = sorted(range(num_pred), key=lambda i: -box_scores[i]) mask_indices = sorted(box_indices, key=lambda i: -mask_scores[i]) iou_types = [ ('box', lambda i,j: bbox_iou_cache[i, j].item(), lambda i,j: crowd_bbox_iou_cache[i,j].item(), lambda i: box_scores[i], box_indices), ('mask', lambda i,j: mask_iou_cache[i, j].item(), lambda i,j: crowd_mask_iou_cache[i,j].item(), lambda i: mask_scores[i], mask_indices) ] timer.start('Main loop') for _class in set(classes + gt_classes): ap_per_iou = [] num_gt_for_class = sum([1 for x in gt_classes if x == _class]) for iouIdx in range(len(iou_thresholds)): iou_threshold = iou_thresholds[iouIdx] for iou_type, iou_func, crowd_func, score_func, indices in iou_types: gt_used = [False] * len(gt_classes) ap_obj = ap_data[iou_type][iouIdx][_class] ap_obj.add_gt_positives(num_gt_for_class) for i in indices: if classes[i] != _class: continue max_iou_found = iou_threshold max_match_idx = -1 for j in range(num_gt): if gt_used[j] or gt_classes[j] != _class: continue iou = iou_func(i, j) if iou > max_iou_found: max_iou_found = iou max_match_idx = j if max_match_idx >= 0: gt_used[max_match_idx] = True ap_obj.push(score_func(i), True) else: # If the detection matches a crowd, we can just ignore it matched_crowd = False if num_crowd > 0: for j in range(len(crowd_classes)): if crowd_classes[j] != _class: continue iou = crowd_func(i, j) if iou > iou_threshold: matched_crowd = True break # All this crowd code so that we can make sure that our eval code gives the # same result as COCOEval. There aren't even that many crowd annotations to # begin with, but accuracy is of the utmost importance. if not matched_crowd: ap_obj.push(score_func(i), False) timer.stop('Main loop') class APDataObject: """ Stores all the information necessary to calculate the AP for one IoU and one class. Note: I type annotated this because why not. """ def __init__(self): self.data_points = [] self.num_gt_positives = 0 def push(self, score:float, is_true:bool): self.data_points.append((score, is_true)) def add_gt_positives(self, num_positives:int): """ Call this once per image. """ self.num_gt_positives += num_positives def is_empty(self) -> bool: return len(self.data_points) == 0 and self.num_gt_positives == 0 def get_ap(self) -> float: """ Warning: result not cached. """ if self.num_gt_positives == 0: return 0 # Sort descending by score self.data_points.sort(key=lambda x: -x[0]) precisions = [] recalls = [] num_true = 0 num_false = 0 # Compute the precision-recall curve. The x axis is recalls and the y axis precisions. for datum in self.data_points: # datum[1] is whether the detection a true or false positive if datum[1]: num_true += 1 else: num_false += 1 precision = num_true / (num_true + num_false) recall = num_true / self.num_gt_positives precisions.append(precision) recalls.append(recall) # Smooth the curve by computing [max(precisions[i:]) for i in range(len(precisions))] # Basically, remove any temporary dips from the curve. # At least that's what I think, idk. COCOEval did it so I do too. for i in range(len(precisions)-1, 0, -1): if precisions[i] > precisions[i-1]: precisions[i-1] = precisions[i] # Compute the integral of precision(recall) d_recall from recall=0->1 using fixed-length riemann summation with 101 bars. y_range = [0] * 101 # idx 0 is recall == 0.0 and idx 100 is recall == 1.00 x_range = np.array([x / 100 for x in range(101)]) recalls = np.array(recalls) # I realize this is weird, but all it does is find the nearest precision(x) for a given x in x_range. # Basically, if the closest recall we have to 0.01 is 0.009 this sets precision(0.01) = precision(0.009). # I approximate the integral this way, because that's how COCOEval does it. indices = np.searchsorted(recalls, x_range, side='left') for bar_idx, precision_idx in enumerate(indices): if precision_idx < len(precisions): y_range[bar_idx] = precisions[precision_idx] # Finally compute the riemann sum to get our integral. # avg([precision(x) for x in 0:0.01:1]) return sum(y_range) / len(y_range) def badhash(x): """ Just a quick and dirty hash function for doing a deterministic shuffle based on image_id. Source: https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key """ x = (((x >> 16) ^ x) * 0x045d9f3b) & 0xFFFFFFFF x = (((x >> 16) ^ x) * 0x045d9f3b) & 0xFFFFFFFF x = ((x >> 16) ^ x) & 0xFFFFFFFF return x def evalimage(net:Yolact, path:str, save_path:str=None): frame = torch.from_numpy(cv2.imread(path)).cuda().float() batch = FastBaseTransform()(frame.unsqueeze(0)) preds = net(batch) img_numpy = prep_display(preds, frame, None, None, undo_transform=False) if save_path is None: img_numpy = img_numpy[:, :, (2, 1, 0)] if save_path is None: plt.imshow(img_numpy) plt.title(path) plt.show() else: cv2.imwrite(save_path, img_numpy) def evalimages(net:Yolact, input_folder:str, output_folder:str): if not os.path.exists(output_folder): os.mkdir(output_folder) print() for p in Path(input_folder).glob('*'): path = str(p) name = os.path.basename(path) name = '.'.join(name.split('.')[:-1]) + '.png' out_path = os.path.join(output_folder, name) evalimage(net, path, out_path) print(path + ' -> ' + out_path) print('Done.') from multiprocessing.pool import ThreadPool from queue import Queue class CustomDataParallel(torch.nn.DataParallel): """ A Custom Data Parallel class that properly gathers lists of dictionaries. """ def gather(self, outputs, output_device): # Note that I don't actually want to convert everything to the output_device return sum(outputs, []) def evalvideo(net:Yolact, path:str, out_path:str=None): # If the path is a digit, parse it as a webcam index is_webcam = path.isdigit() # If the input image size is constant, this make things faster (hence why we can use it in a video setting). cudnn.benchmark = True if is_webcam: vid = cv2.VideoCapture(int(path)) else: vid = cv2.VideoCapture(path) if not vid.isOpened(): print('Could not open video "%s"' % path) exit(-1) target_fps = round(vid.get(cv2.CAP_PROP_FPS)) frame_width = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) if is_webcam: num_frames = float('inf') else: num_frames = round(vid.get(cv2.CAP_PROP_FRAME_COUNT)) net = CustomDataParallel(net).cuda() transform = torch.nn.DataParallel(FastBaseTransform()).cuda() frame_times = MovingAverage(100) fps = 0 frame_time_target = 1 / target_fps running = True fps_str = '' vid_done = False frames_displayed = 0 if out_path is not None: out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height)) def cleanup_and_exit(): print() pool.terminate() vid.release() if out_path is not None: out.release() cv2.destroyAllWindows() exit() def get_next_frame(vid): frames = [] for idx in range(args.video_multiframe): frame = vid.read()[1] if frame is None: return frames frames.append(frame) return frames def transform_frame(frames): with torch.no_grad(): frames = [torch.from_numpy(frame).cuda().float() for frame in frames] return frames, transform(torch.stack(frames, 0)) def eval_network(inp): with torch.no_grad(): frames, imgs = inp num_extra = 0 while imgs.size(0) < args.video_multiframe: imgs = torch.cat([imgs, imgs[0].unsqueeze(0)], dim=0) num_extra += 1 out = net(imgs) if num_extra > 0: out = out[:-num_extra] return frames, out def prep_frame(inp, fps_str): with torch.no_grad(): frame, preds = inp return prep_display(preds, frame, None, None, undo_transform=False, class_color=True, fps_str=fps_str) frame_buffer = Queue() video_fps = 0 # All this timing code to make sure that def play_video(): try: nonlocal frame_buffer, running, video_fps, is_webcam, num_frames, frames_displayed, vid_done video_frame_times = MovingAverage(100) frame_time_stabilizer = frame_time_target last_time = None stabilizer_step = 0.0005 progress_bar = ProgressBar(30, num_frames) while running: frame_time_start = time.time() if not frame_buffer.empty(): next_time = time.time() if last_time is not None: video_frame_times.add(next_time - last_time) video_fps = 1 / video_frame_times.get_avg() if out_path is None: cv2.imshow(path, frame_buffer.get()) else: out.write(frame_buffer.get()) frames_displayed += 1 last_time = next_time if out_path is not None: if video_frame_times.get_avg() == 0: fps = 0 else: fps = 1 / video_frame_times.get_avg() progress = frames_displayed / num_frames * 100 progress_bar.set_val(frames_displayed) print('\rProcessing Frames %s %6d / %6d (%5.2f%%) %5.2f fps ' % (repr(progress_bar), frames_displayed, num_frames, progress, fps), end='') # This is split because you don't want savevideo to require cv2 display functionality (see #197) if out_path is None and cv2.waitKey(1) == 27: # Press Escape to close running = False if not (frames_displayed < num_frames): running = False if not vid_done: buffer_size = frame_buffer.qsize() if buffer_size < args.video_multiframe: frame_time_stabilizer += stabilizer_step elif buffer_size > args.video_multiframe: frame_time_stabilizer -= stabilizer_step if frame_time_stabilizer < 0: frame_time_stabilizer = 0 new_target = frame_time_stabilizer if is_webcam else max(frame_time_stabilizer, frame_time_target) else: new_target = frame_time_target next_frame_target = max(2 * new_target - video_frame_times.get_avg(), 0) target_time = frame_time_start + next_frame_target - 0.001 # Let's just subtract a millisecond to be safe if out_path is None or args.emulate_playback: # This gives more accurate timing than if sleeping the whole amount at once while time.time() < target_time: time.sleep(0.001) else: # Let's not starve the main thread, now time.sleep(0.001) except: # See issue #197 for why this is necessary import traceback traceback.print_exc() extract_frame = lambda x, i: (x[0][i] if x[1][i]['detection'] is None else x[0][i].to(x[1][i]['detection']['box'].device), [x[1][i]]) # Prime the network on the first frame because I do some thread unsafe things otherwise print('Initializing model... ', end='') first_batch = eval_network(transform_frame(get_next_frame(vid))) print('Done.') # For each frame the sequence of functions it needs to go through to be processed (in reversed order) sequence = [prep_frame, eval_network, transform_frame] pool = ThreadPool(processes=len(sequence) + args.video_multiframe + 2) pool.apply_async(play_video) active_frames = [{'value': extract_frame(first_batch, i), 'idx': 0} for i in range(len(first_batch[0]))] print() if out_path is None: print('Press Escape to close.') try: while vid.isOpened() and running: # Hard limit on frames in buffer so we don't run out of memory >.> while frame_buffer.qsize() > 100: time.sleep(0.001) start_time = time.time() # Start loading the next frames from the disk if not vid_done: next_frames = pool.apply_async(get_next_frame, args=(vid,)) else: next_frames = None if not (vid_done and len(active_frames) == 0): # For each frame in our active processing queue, dispatch a job # for that frame using the current function in the sequence for frame in active_frames: _args = [frame['value']] if frame['idx'] == 0: _args.append(fps_str) frame['value'] = pool.apply_async(sequence[frame['idx']], args=_args) # For each frame whose job was the last in the sequence (i.e. for all final outputs) for frame in active_frames: if frame['idx'] == 0: frame_buffer.put(frame['value'].get()) # Remove the finished frames from the processing queue active_frames = [x for x in active_frames if x['idx'] > 0] # Finish evaluating every frame in the processing queue and advanced their position in the sequence for frame in list(reversed(active_frames)): frame['value'] = frame['value'].get() frame['idx'] -= 1 if frame['idx'] == 0: # Split this up into individual threads for prep_frame since it doesn't support batch size active_frames += [{'value': extract_frame(frame['value'], i), 'idx': 0} for i in range(1, len(frame['value'][0]))] frame['value'] = extract_frame(frame['value'], 0) # Finish loading in the next frames and add them to the processing queue if next_frames is not None: frames = next_frames.get() if len(frames) == 0: vid_done = True else: active_frames.append({'value': frames, 'idx': len(sequence)-1}) # Compute FPS frame_times.add(time.time() - start_time) fps = args.video_multiframe / frame_times.get_avg() else: fps = 0 fps_str = 'Processing FPS: %.2f | Video Playback FPS: %.2f | Frames in Buffer: %d' % (fps, video_fps, frame_buffer.qsize()) if not args.display_fps: print('\r' + fps_str + ' ', end='') except KeyboardInterrupt: print('\nStopping...') cleanup_and_exit() def evaluate(net:Yolact, dataset, train_mode=False): net.detect.use_fast_nms = args.fast_nms net.detect.use_cross_class_nms = args.cross_class_nms cfg.mask_proto_debug = args.mask_proto_debug # TODO Currently we do not support Fast Mask Re-scroing in evalimage, evalimages, and evalvideo if args.image is not None: if ':' in args.image: inp, out = args.image.split(':') evalimage(net, inp, out) else: evalimage(net, args.image) return elif args.images is not None: inp, out = args.images.split('E:/yolact-master/coco/images/train2017: E:/yolact-master/results/output') evalimages(net, inp, out) return elif args.video is not None: if ':' in args.video: inp, out = args.video.split(':') evalvideo(net, inp, out) else: evalvideo(net, args.video) return frame_times = MovingAverage() dataset_size = len(dataset) if args.max_images < 0 else min(args.max_images, len(dataset)) progress_bar = ProgressBar(30, dataset_size) print() if not args.display and not args.benchmark: # For each class and iou, stores tuples (score, isPositive) # Index ap_data[type][iouIdx][classIdx] ap_data = { 'box' : [[APDataObject() for _ in cfg.dataset.class_names] for _ in iou_thresholds], 'mask': [[APDataObject() for _ in cfg.dataset.class_names] for _ in iou_thresholds] } detections = Detections() else: timer.disable('Load Data') dataset_indices = list(range(len(dataset))) if args.shuffle: random.shuffle(dataset_indices) elif not args.no_sort: # Do a deterministic shuffle based on the image ids # # I do this because on python 3.5 dictionary key order is *random*, while in 3.6 it's # the order of insertion. That means on python 3.6, the images come in the order they are in # in the annotations file. For some reason, the first images in the annotations file are # the hardest. To combat this, I use a hard-coded hash function based on the image ids # to shuffle the indices we use. That way, no matter what python version or how pycocotools # handles the data, we get the same result every time. hashed = [badhash(x) for x in dataset.ids] dataset_indices.sort(key=lambda x: hashed[x]) dataset_indices = dataset_indices[:dataset_size] try: # Main eval loop for it, image_idx in enumerate(dataset_indices): timer.reset() with timer.env('Load Data'): img, gt, gt_masks, h, w, num_crowd = dataset.pull_item(image_idx) # Test flag, do not upvote if cfg.mask_proto_debug: with open('scripts/info.txt', 'w') as f: f.write(str(dataset.ids[image_idx])) np.save('scripts/gt.npy', gt_masks) batch = Variable(img.unsqueeze(0)) if args.cuda: batch = batch.cuda() with timer.env('Network Extra'): preds = net(batch) # Perform the meat of the operation here depending on our mode. if args.display: img_numpy = prep_display(preds, img, h, w) elif args.benchmark: prep_benchmark(preds, h, w) else: prep_metrics(ap_data, preds, img, gt, gt_masks, h, w, num_crowd, dataset.ids[image_idx], detections) # First couple of images take longer because we're constructing the graph. # Since that's technically initialization, don't include those in the FPS calculations. if it > 1: frame_times.add(timer.total_time()) if args.display: if it > 1: print('Avg FPS: %.4f' % (1 / frame_times.get_avg())) plt.imshow(img_numpy) plt.title(str(dataset.ids[image_idx])) plt.show() elif not args.no_bar: if it > 1: fps = 1 / frame_times.get_avg() else: fps = 0 progress = (it+1) / dataset_size * 100 progress_bar.set_val(it+1) print('\rProcessing Images %s %6d / %6d (%5.2f%%) %5.2f fps ' % (repr(progress_bar), it+1, dataset_size, progress, fps), end='') if not args.display and not args.benchmark: print() if args.output_coco_json: print('Dumping detections...') if args.output_web_json: detections.dump_web() else: detections.dump() else: if not train_mode: print('Saving data...') with open(args.ap_data_file, 'wb') as f: pickle.dump(ap_data, f) return calc_map(ap_data) elif args.benchmark: print() print() print('Stats for the last frame:') timer.print_stats() avg_seconds = frame_times.get_avg() print('Average: %5.2f fps, %5.2f ms' % (1 / frame_times.get_avg(), 1000*avg_seconds)) except KeyboardInterrupt: print('Stopping...') def calc_map(ap_data): print('Calculating mAP...') aps = [{'box': [], 'mask': []} for _ in iou_thresholds] for _class in range(len(cfg.dataset.class_names)): for iou_idx in range(len(iou_thresholds)): for iou_type in ('box', 'mask'): ap_obj = ap_data[iou_type][iou_idx][_class] if not ap_obj.is_empty(): aps[iou_idx][iou_type].append(ap_obj.get_ap()) all_maps = {'box': OrderedDict(), 'mask': OrderedDict()} # Looking back at it, this code is really hard to read :/ for iou_type in ('box', 'mask'): all_maps[iou_type]['all'] = 0 # Make this first in the ordereddict for i, threshold in enumerate(iou_thresholds): mAP = sum(aps[i][iou_type]) / len(aps[i][iou_type]) * 100 if len(aps[i][iou_type]) > 0 else 0 all_maps[iou_type][int(threshold*100)] = mAP all_maps[iou_type]['all'] = (sum(all_maps[iou_type].values()) / (len(all_maps[iou_type].values())-1)) print_maps(all_maps) # Put in a prettier format so we can serialize it to json during training all_maps = {k: {j: round(u, 2) for j, u in v.items()} for k, v in all_maps.items()} return all_maps def print_maps(all_maps): # Warning: hacky make_row = lambda vals: (' %5s |' * len(vals)) % tuple(vals) make_sep = lambda n: ('-------+' * n) print() print(make_row([''] + [('.%d ' % x if isinstance(x, int) else x + ' ') for x in all_maps['box'].keys()])) print(make_sep(len(all_maps['box']) + 1)) for iou_type in ('box', 'mask'): print(make_row([iou_type] + ['%.2f' % x if x < 100 else '%.1f' % x for x in all_maps[iou_type].values()])) print(make_sep(len(all_maps['box']) + 1)) print() if __name__ == '__main__': parse_args() if args.config is not None: set_cfg(args.config) if args.trained_model == 'interrupt': args.trained_model = SavePath.get_interrupt('weights/') elif args.trained_model == 'latest': args.trained_model = SavePath.get_latest('weights/', cfg.name) if args.config is None: model_path = SavePath.from_str(args.trained_model) # TODO: Bad practice? Probably want to do a name lookup instead. args.config = model_path.model_name + '_config' print('Config not specified. Parsed %s from the file name.\n' % args.config) set_cfg(args.config) if args.detect: cfg.eval_mask_branch = False if args.dataset is not None: set_dataset(args.dataset) with torch.no_grad(): if not os.path.exists('results'): os.makedirs('results') if args.cuda: cudnn.fastest = True torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') if args.resume and not args.display: with open(args.ap_data_file, 'rb') as f: ap_data = pickle.load(f) calc_map(ap_data) exit() if args.image is None and args.video is None and args.images is None: dataset = COCODetection(cfg.dataset.valid_images, cfg.dataset.valid_info, transform=BaseTransform(), has_gt=cfg.dataset.has_gt) prep_coco_cats() else: dataset = None print('Loading model...', end='') net = Yolact() net.load_weights(args.trained_model) net.eval() print(' Done.') if args.cuda: net = net.cuda() evaluate(net, dataset) Traceback (most recent call last): File "eval.py", line 1105, in <module> evaluate(net, dataset) File "eval.py", line 884, in evaluate inp, out = args.images.split('E:/yolact-master/coco/images/train2017: E:/yolact-master/results/output') ValueError: not enough values to unpack (expected 2, got 1)
06-18
<think> 根据用户的问题,用户希望了解`of_find_matching_node`函数的使用方法、功能及示例。结合提供的引用内容,我们可以从引用[2]和引用[3]中提取相关信息。 引用[2]提到: > 4、of_find_matching_node_and_match 引用[3]详细描述了该函数(注意,用户询问的是`of_find_matching_node`,但引用中出现了`of_find_matching_node_and_match`,通常`of_find_matching_node`是简化版本,我们以实际引用为准): > 函数参数和返回值含义如下: > from:开始查找的节点,如果为 NULL 表示从根节点开始查找整个设备树。 > matches:of_device_id 匹配表,也就是在此匹配表里面查找节点。 > match:找到的匹配的 of_device_id。 > 返回值:找到的节点,如果为 NULL 表示查找失败 因此,我们重点介绍`of_find_matching_node_and_match`函数(因为引用中没有直接提到`of_find_matching_node`,但根据经验,这两个函数密切相关)。 **功能解释**: `of_find_matching_node_and_match`函数用于在设备树中查找与指定匹配表(`of_device_id`数组)匹配的设备节点。该函数从给定的起始节点开始遍历设备树,直到找到第一个匹配的节点。同时,它还可以返回匹配到的`of_device_id`结构体指针。 **使用方法**: ```c struct device_node *of_find_matching_node_and_match(struct device_node *from, const struct of_device_id *matches, const struct of_device_id **match); ``` - **参数**: - `from`:开始查找的节点指针。如果设置为`NULL`,则从设备树的根节点开始查找。 - `matches`:指向`of_device_id`数组的指针,该数组定义了要匹配的设备类型和兼容性字符串。 - `match`:输出参数,用于返回匹配到的`of_device_id`结构体指针。可以为`NULL`,表示不需要返回该值。 - **返回值**: - 成功:返回匹配的设备节点指针(`struct device_node*`)。 - 失败:返回`NULL`。 **示例代码**: 假设我们有一个设备树匹配表`my_of_match`,我们想查找匹配的设备节点: ```c #include <linux/of.h> #include <linux/of_device.h> static const struct of_device_id my_of_match[] = { { .compatible = "vendor,device1" }, { .compatible = "vendor,device2" }, { /* sentinel */ } }; struct device_node *find_matching_node(void) { const struct of_device_id *match; struct device_node *np; // 从根节点开始查找,匹配my_of_match表 np = of_find_matching_node_and_match(NULL, my_of_match, &match); if (np) { pr_info("Found node: %s, matched compatible: %s\n", np->name, match->compatible); } else { pr_info("No matching node found\n"); } return np; } ``` **注意**: - 使用该函数需要包含头文件`<linux/of.h>`和`<linux/of_device.h>`。 - 匹配表必须以一个空的`of_device_id`结束(作为哨兵)。 - 找到的节点在使用后,应该调用`of_node_put(np)`来减少引用计数,以避免内存泄漏。 **相关函数**: 引用[2]中还提到了`of_find_node_by_name`、`of_find_node_by_type`、`of_find_compatible_node`等,这些函数都是用于查找设备节点的,但匹配条件不同。 如果用户需要的是`of_find_matching_node`(不带`_and_match`),它通常是`of_find_matching_node_and_match`的简化版本,不返回匹配的`of_device_id`。示例: ```c struct device_node *of_find_matching_node(struct device_node *from, const struct of_device_id *matches) { return of_find_matching_node_and_match(from, matches, NULL); } ``` 以上内容基于提供的引用和Linux内核设备树操作函数的常见用法。 §§相关问题§§ 1. `of_find_matching_node`和`of_find_compatible_node`有什么区别? 2. 在Linux驱动中,如何定义和使用`of_device_id`匹配表? 3. 设备树节点查找失败可能的原因有哪些? </think>### `of_find_matching_node` 函数详解 #### 功能解释 `of_find_matching_node` 是 Linux 设备树(Device Tree)操作的核心函数,用于在设备树中查找与指定匹配表(`of_device_id` 数组)兼容的第一个设备节点。它通过遍历设备树节点,将节点的 compatible 属性与预定义的匹配表进行对比,返回第一个匹配成功的节点指针[^1][^3]。 #### 函数原型 ```c struct device_node *of_find_matching_node( struct device_node *from, const struct of_device_id *matches ); ``` #### 参数说明 1. **`from`** : - 开始查找的起始节点指针 - 设为 `NULL` 表示从设备树根节点开始遍历整个设备树 - 设为某个节点指针时,从该节点开始向后查找[^3] 2. **`matches`** : - 指向 `of_device_id` 结构体数组的指针 - 该数组定义了要匹配的设备兼容性字符串(compatible strings) - 数组必须以空元素 `{ }` 结尾(哨兵标记)[^1][^3] #### 返回值 - **成功**:返回匹配节点的 `device_node` 指针 - **失败**:返回 `NULL`(未找到匹配节点) --- ### 使用示例 #### 步骤 1:定义匹配表 ```c static const struct of_device_id my_match_table[] = { { .compatible = "vendor,device-a" }, // 匹配设备树中 compatible="vendor,device-a" 的节点 { .compatible = "vendor,device-b" }, // 匹配设备树中 compatible="vendor,device-b" 的节点 { } // 哨兵标记(必须!) }; ``` #### 步骤 2:查找匹配节点 ```c struct device_node *np = NULL; // 从根节点开始查找 np = of_find_matching_node(NULL, my_match_table); if (!np) { printk("未找到匹配节点!\n"); } else { printk("找到节点:%s\n", np->name); of_node_put(np); // 减少节点引用计数(必须调用!) } ``` #### 典型应用场景(驱动初始化) ```c static int my_driver_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; // 通过匹配表查找特定子节点 struct device_node *child_np = of_find_matching_node(np, child_match_table); if (child_np) { // 处理子节点... of_node_put(child_np); } return 0; } static const struct of_device_id my_driver_match[] = { { .compatible = "vendor,main-device" }, { } }; MODULE_DEVICE_TABLE(of, my_driver_match); ``` --- ### 关键注意事项 1. **引用计数管理** 调用成功后**必须**使用 `of_node_put(np)` 减少节点引用计数,防止内存泄漏[^1]。 2. **匹配表结构** `of_device_id` 数组必须以空结构体 `{ }` 结尾,否则会导致越界访问[^3]。 3. **遍历范围控制** 通过 `from` 参数可限定遍历范围: ```c // 示例:从父节点开始查找子节点 struct device_node *child = of_find_matching_node(parent_np, child_match_table); ``` 4. **兼容性优先级** 函数按匹配表定义的顺序检查,返回第一个匹配成功的节点(非最佳匹配)[^1]。 --- ### 相关函数对比 | 函数名 | 特点 | |---------------------------|----------------------------------------------------------------------| | `of_find_compatible_node` | 匹配单个兼容字符串 | | `of_find_node_by_name` | 按节点名称匹配(非标准用法,推荐优先使用 compatible) | | `of_find_node_by_path` | 通过完整路径查找节点(如 `/soc/i2c@48070000`)[^3] |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值