Spring AI与RAG技术实战:构建企业级智能文档问答系统
引言
随着人工智能技术的快速发展,企业对于智能化文档处理的需求日益增长。传统的文档检索方式往往无法满足用户对精准、智能问答的需求。Spring AI结合RAG(Retrieval-Augmented Generation)技术,为企业提供了一种全新的智能文档问答解决方案。本文将深入探讨如何利用Spring AI框架和RAG技术构建高效的企业级智能文档问答系统。
技术架构概述
核心组件
我们的智能文档问答系统基于以下核心技术栈:
- Spring AI: 提供统一的AI应用开发接口
- RAG架构: 检索增强生成,结合语义搜索和LLM生成能力
- 向量数据库: 使用Milvus存储文档向量
- Embedding模型: OpenAI或Ollama提供的文本向量化服务
- Spring Boot: 作为基础Web框架
系统架构设计
客户端 → Spring Boot应用 → RAG引擎 → 向量数据库
↓
LLM服务
环境准备与依赖配置
Maven依赖配置
首先,在pom.xml中添加必要的依赖:
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>0.8.1</version>
</dependency>
<dependency>
<groupId>io.milvus</groupId>
<artifactId>milvus-sdk-java</artifactId>
<version>2.3.4</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
</dependencies>
应用配置
在application.yml中配置相关参数:
spring:
ai:
openai:
api-key: ${OPENAI_API_KEY}
base-url: https://api.openai.com
data:
redis:
host: localhost
port: 6379
milvus:
host: localhost
port: 19530
核心功能实现
1. 文档预处理与向量化
文档预处理是RAG系统的第一步,我们需要将文档转换为向量表示:
@Service
public class DocumentProcessor {
@Autowired
private EmbeddingClient embeddingClient;
@Autowired
private MilvusService milvusService;
public void processDocument(String documentId, String content) {
// 文本分块处理
List<String> chunks = splitTextIntoChunks(content);
// 生成向量
List<List<Double>> embeddings = generateEmbeddings(chunks);
// 存储到向量数据库
storeEmbeddings(documentId, chunks, embeddings);
}
private List<String> splitTextIntoChunks(String text) {
// 实现文本分块逻辑
return Arrays.asList(text.split("\\n\\n"));
}
private List<List<Double>> generateEmbeddings(List<String> chunks) {
return embeddingClient.embed(chunks);
}
private void storeEmbeddings(String documentId,
List<String> chunks,
List<List<Double>> embeddings) {
milvusService.storeVectors(documentId, chunks, embeddings);
}
}
2. 语义检索实现
基于向量相似度的语义检索是RAG的核心:
@Service
public class SemanticSearchService {
@Autowired
private EmbeddingClient embeddingClient;
@Autowired
private MilvusService milvusService;
public List<SearchResult> searchRelevantDocuments(String query, int topK) {
// 将查询转换为向量
List<Double> queryVector = embeddingClient.embed(query);
// 在向量数据库中搜索相似文档
return milvusService.searchSimilarVectors(queryVector, topK);
}
}
@Data
@AllArgsConstructor
class SearchResult {
private String documentId;
private String chunkText;
private double similarityScore;
}
3. RAG问答引擎
结合检索结果和LLM生成回答:
@Service
public class RAGQuestionAnsweringService {
@Autowired
private SemanticSearchService searchService;
@Autowired
private ChatClient chatClient;
public String answerQuestion(String question) {
// 检索相关文档片段
List<SearchResult> relevantDocs = searchService
.searchRelevantDocuments(question, 5);
// 构建提示词
String prompt = buildPrompt(question, relevantDocs);
// 调用LLM生成回答
return chatClient.generate(prompt);
}
private String buildPrompt(String question, List<SearchResult> relevantDocs) {
StringBuilder promptBuilder = new StringBuilder();
promptBuilder.append("基于以下文档内容,请回答这个问题:")
.append(question)
.append("\n\n相关文档内容:\n");
for (SearchResult result : relevantDocs) {
promptBuilder.append(result.getChunkText())
.append("\n---\n");
}
promptBuilder.append("\n请基于以上信息给出准确的回答。");
return promptBuilder.toString();
}
}
4. Milvus向量数据库集成
@Service
public class MilvusService {
private final MilvusClient milvusClient;
public MilvusService(@Value("${milvus.host}") String host,
@Value("${milvus.port}") int port) {
this.milvusClient = new MilvusServiceClient(
ConnectParam.newBuilder()
.withHost(host)
.withPort(port)
.build()
);
}
public void storeVectors(String documentId,
List<String> chunks,
List<List<Double>> embeddings) {
// 实现向量存储逻辑
List<InsertParam.Field> fields = new ArrayList<>();
fields.add(new InsertParam.Field("document_id",
Collections.nCopies(chunks.size(), documentId)));
fields.add(new InsertParam.Field("chunk_text", chunks));
fields.add(new InsertParam.Field("embedding", embeddings));
InsertParam insertParam = InsertParam.newBuilder()
.withCollectionName("documents")
.withFields(fields)
.build();
milvusClient.insert(insertParam);
}
public List<SearchResult> searchSimilarVectors(List<Double> queryVector, int topK) {
// 实现向量搜索逻辑
SearchParam searchParam = SearchParam.newBuilder()
.withCollectionName("documents")
.withMetricType(MetricType.L2)
.withTopK(topK)
.withVectors(Collections.singletonList(queryVector))
.withParams("{\"nprobe\":10}")
.build();
SearchResults searchResults = milvusClient.search(searchParam);
return processSearchResults(searchResults);
}
}
REST API设计
问答接口
@RestController
@RequestMapping("/api/rag")
public class RAGController {
@Autowired
private RAGQuestionAnsweringService qaService;
@PostMapping("/ask")
public ResponseEntity<AnswerResponse> askQuestion(@RequestBody QuestionRequest request) {
try {
String answer = qaService.answerQuestion(request.getQuestion());
return ResponseEntity.ok(new AnswerResponse(answer));
} catch (Exception e) {
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(new AnswerResponse("系统繁忙,请稍后重试"));
}
}
@Data
public static class QuestionRequest {
private String question;
}
@Data
@AllArgsConstructor
public static class AnswerResponse {
private String answer;
}
}
文档管理接口
@RestController
@RequestMapping("/api/documents")
public class DocumentController {
@Autowired
private DocumentProcessor documentProcessor;
@PostMapping("/upload")
public ResponseEntity<String> uploadDocument(@RequestBody DocumentUploadRequest request) {
try {
documentProcessor.processDocument(
request.getDocumentId(),
request.getContent()
);
return ResponseEntity.ok("文档处理成功");
} catch (Exception e) {
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body("文档处理失败:" + e.getMessage());
}
}
@Data
public static class DocumentUploadRequest {
private String documentId;
private String content;
}
}
性能优化策略
1. 缓存机制
使用Redis缓存频繁访问的查询结果:
@Service
public class CachedRAGService {
@Autowired
private RAGQuestionAnsweringService ragService;
@Autowired
private RedisTemplate<String, String> redisTemplate;
private static final String CACHE_PREFIX = "rag_answer:";
@Cacheable(value = "ragAnswers", key = "#question")
public String getCachedAnswer(String question) {
String cacheKey = CACHE_PREFIX + DigestUtils.md5DigestAsHex(question.getBytes());
// 先尝试从缓存获取
String cachedAnswer = redisTemplate.opsForValue().get(cacheKey);
if (cachedAnswer != null) {
return cachedAnswer;
}
// 缓存未命中,调用RAG服务
String answer = ragService.answerQuestion(question);
// 缓存结果,设置1小时过期
redisTemplate.opsForValue().set(cacheKey, answer, 1, TimeUnit.HOURS);
return answer;
}
}
2. 批量处理优化
对于大量文档处理,采用批量操作:
public void batchProcessDocuments(List<Document> documents) {
int batchSize = 100;
List<List<Document>> batches = partition(documents, batchSize);
batches.parallelStream().forEach(batch -> {
batch.forEach(doc -> documentProcessor.processDocument(
doc.getId(), doc.getContent()));
});
}
错误处理与监控
全局异常处理
@ControllerAdvice
public class GlobalExceptionHandler {
@ExceptionHandler(Exception.class)
public ResponseEntity<ErrorResponse> handleGlobalException(Exception ex) {
ErrorResponse error = new ErrorResponse(
"系统错误",
ex.getMessage(),
System.currentTimeMillis()
);
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(error);
}
@Data
@AllArgsConstructor
public static class ErrorResponse {
private String error;
private String message;
private long timestamp;
}
}
监控指标
集成Micrometer进行性能监控:
@Component
public class RAGMetrics {
private final MeterRegistry meterRegistry;
private final Counter questionCounter;
private final Timer responseTimer;
public RAGMetrics(MeterRegistry meterRegistry) {
this.meterRegistry = meterRegistry;
this.questionCounter = meterRegistry.counter("rag.questions.total");
this.responseTimer = meterRegistry.timer("rag.response.time");
}
public void recordQuestion() {
questionCounter.increment();
}
public Timer.Sample startTiming() {
return Timer.start(meterRegistry);
}
public void stopTiming(Timer.Sample sample, String status) {
sample.stop(responseTimer.tag("status", status));
}
}
部署与运维
Docker容器化部署
FROM openjdk:17-jdk-slim
WORKDIR /app
COPY target/rag-system.jar app.jar
EXPOSE 8080
ENTRYPOINT ["java", "-jar", "app.jar"]
Kubernetes部署配置
apiVersion: apps/v1
kind: Deployment
metadata:
name: rag-system
spec:
replicas: 3
selector:
matchLabels:
app: rag-system
template:
metadata:
labels:
app: rag-system
spec:
containers:
- name: rag-app
image: rag-system:latest
ports:
- containerPort: 8080
env:
- name: OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: openai-secret
key: api-key
---
apiVersion: v1
kind: Service
metadata:
name: rag-service
spec:
selector:
app: rag-system
ports:
- port: 80
targetPort: 8080
实际应用场景
企业知识库问答
该系统可应用于:
- 企业内部文档智能检索
- 技术支持知识库
- 产品文档问答系统
- 法律法规咨询
客户服务自动化
集成到客服系统,提供:
- 24/7智能客服
- 多语言支持
- 个性化回答生成
总结与展望
本文详细介绍了基于Spring AI和RAG技术构建企业级智能文档问答系统的完整方案。通过结合语义检索和大语言模型,我们能够构建出既准确又智能的问答系统。未来,我们可以进一步探索:
- 多模态支持: 支持图片、表格等非文本内容
- 实时学习: 系统能够从用户反馈中持续学习优化
- 个性化推荐: 基于用户历史提供个性化答案
- 联邦学习: 在保护隐私的前提下实现模型协同训练
Spring AI为Java开发者提供了强大的AI应用开发能力,结合RAG架构,我们能够构建出真正实用的企业级AI应用。

被折叠的 条评论
为什么被折叠?



