Spring AI与RAG技术实战:构建企业级智能文档问答系统

Spring AI与RAG技术实战:构建企业级智能文档问答系统

引言

随着人工智能技术的快速发展,企业对于智能化文档处理的需求日益增长。传统的文档检索方式已经无法满足用户对于精准、智能问答的需求。Spring AI结合RAG(Retrieval-Augmented Generation)技术,为企业提供了一种全新的智能文档问答解决方案。本文将详细介绍如何使用Spring AI框架构建企业级智能文档问答系统。

技术栈概述

Spring AI框架

Spring AI是Spring生态系统中的AI集成框架,提供了统一的API来访问各种AI模型和服务。它支持OpenAI、Google AI、Azure OpenAI等主流AI服务提供商。

RAG技术原理

RAG(检索增强生成)技术结合了信息检索和文本生成的优势。其核心思想是:

  1. 首先从知识库中检索与问题相关的文档片段
  2. 然后将检索到的上下文与用户问题一起提供给大语言模型
  3. 最后生成基于准确信息的回答

系统架构设计

整体架构

用户界面层 → API网关层 → 业务逻辑层 → 数据访问层
                                   ↓
                               向量数据库
                                   ↓
                               文档存储

核心组件

  1. 文档处理模块:负责文档的解析、分块和向量化
  2. 向量存储模块:使用Milvus或Chroma存储文档向量
  3. 检索模块:实现语义相似度检索
  4. 生成模块:集成大语言模型生成回答
  5. 缓存模块:使用Redis缓存频繁查询结果

环境准备与配置

Maven依赖配置

<dependencies>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
        <version>0.8.1</version>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-redis</artifactId>
    </dependency>
</dependencies>

应用配置

spring:
  ai:
    openai:
      api-key: ${OPENAI_API_KEY}
      chat:
        options:
          model: gpt-3.5-turbo
          temperature: 0.7
  
  data:
    redis:
      host: localhost
      port: 6379

核心功能实现

1. 文档向量化处理

@Service
public class DocumentVectorizationService {
    
    @Autowired
    privat
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值