Spring Boot集成Spring AI与RAG技术构建智能问答系统

在Spring Boot中集成Spring AI与RAG技术构建智能问答系统

引言

随着人工智能技术的快速发展,越来越多的企业开始探索如何将AI能力集成到现有系统中,以提升业务效率。Spring AI作为Spring生态中的新兴技术,为开发者提供了便捷的AI集成方案。本文将介绍如何在Spring Boot项目中结合RAG(检索增强生成)技术,构建一个高效的智能问答系统。

技术栈

  • 核心框架: Spring Boot 3.x
  • AI技术: Spring AI, RAG(检索增强生成)
  • 向量数据库: Milvus
  • Embedding模型: OpenAI
  • 其他工具: Lombok, MapStruct

实现步骤

1. 环境准备

首先,确保你的开发环境中已安装以下工具:

  • JDK 17+
  • Maven 3.8+
  • Docker(用于运行Milvus)

2. 创建Spring Boot项目

使用Spring Initializr创建一个新的Spring Boot项目,添加以下依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-core</artifactId>
    <version>1.0.0</version>
</dependency>
<dependency>
    <groupId>io.milvus</groupId>
    <artifactId>milvus-sdk-java</artifactId>
    <version>2.0.0</version>
</dependency>

3. 配置Milvus

启动Milvus服务:

docker run -d --name milvus -p 19530:19530 milvusdb/milvus:latest

application.properties中配置Milvus连接信息:

milvus.host=localhost
milvus.port=19530

4. 实现RAG流程

RAG的核心流程包括文档加载、向量化、语义检索和生成回答。以下是关键代码示例:

文档加载
@Service
public class DocumentLoader {
    public List<String> loadDocuments(String path) {
        // 实现文档加载逻辑
    }
}
向量化
@Service
public class EmbeddingService {
    @Autowired
    private OpenAIClient openAIClient;

    public List<Float> generateEmbedding(String text) {
        // 调用OpenAI生成Embedding
    }
}
语义检索
@Service
public class SearchService {
    @Autowired
    private MilvusClient milvusClient;

    public List<String> search(String query, int topK) {
        // 在Milvus中执行语义检索
    }
}
生成回答
@Service
public class AnswerGenerator {
    @Autowired
    private OpenAIClient openAIClient;

    public String generateAnswer(String context, String question) {
        // 结合上下文生成回答
    }
}

5. 集成测试

编写单元测试和集成测试,确保各模块功能正常。例如:

@SpringBootTest
public class RagApplicationTests {
    @Autowired
    private DocumentLoader documentLoader;

    @Test
    public void testDocumentLoading() {
        List<String> documents = documentLoader.loadDocuments("path/to/docs");
        assertNotNull(documents);
    }
}

总结

本文详细介绍了如何在Spring Boot项目中集成Spring AI和RAG技术,构建一个智能问答系统。通过向量数据库和Embedding模型的结合,实现了高效的语义检索和回答生成。未来可以进一步优化模型性能,扩展支持更多企业场景。

参考资料

  1. Spring AI官方文档
  2. Milvus官方文档
  3. OpenAI API文档
内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位地图构建)的性能展开多项对比实验研究,重点分析在稀疏稠密landmark环境下、预测更新步骤同时进行非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生和相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测更新机制同步否对滤波器稳定性精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
内容概要:本文围绕“基于主从博弈的售电商多元零售套餐设计多级市场购电策略”展开,结合Matlab代码实现,提出了一种适用于电力市场化环境下的售电商优化决策模型。该模型采用主从博弈(Stackelberg Game)理论构建售电商用户之间的互动关系,售电商作为领导者制定电价套餐策略,用户作为跟随者响应电价并调整用电行为。同时,模型综合考虑售电商在多级电力市场(如日前市场、实时市场)中的【顶级EI复现】基于主从博弈的售电商多元零售套餐设计多级市场购电策略(Matlab代码实现)购电组合优化,兼顾成本最小化收益最大化,并引入不确定性因素(如负荷波动、可再生能源出力变化)进行鲁棒或随机优化处理。文中提供了完整的Matlab仿真代码,涵盖博弈建模、优化求解(可能结合YALMIP+CPLEX/Gurobi等工具)、结果可视化等环节,具有较强的可复现性和工程应用价值。; 适合人群:具备一定电力系统基础知识、博弈论初步认知和Matlab编程能力的研究生、科研人员及电力市场从业人员,尤其适合从事电力市场运营、需求响应、售电策略研究的相关人员。; 使用场景及目标:① 掌握主从博弈在电力市场中的建模方法;② 学习售电商如何设计差异化零售套餐以引导用户用电行为;③ 实现多级市场购电成本风险的协同优化;④ 借助Matlab代码快速复现顶级EI期刊论文成果,支撑科研项目或实际系统开发。; 阅读建议:建议读者结合提供的网盘资源下载完整代码案例数据,按照文档目录顺序逐步学习,重点关注博弈模型的数学表达Matlab实现逻辑,同时尝试对目标函数或约束条件进行扩展改进,以深化理解并提升科研创新能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值