文章目录
一、什么是Fork/Join
Java.util.concurrent.ForkJoinPool由Java大师Doug Lea主持编写,它可以将一个大的任务拆分成多个子任务进行并行处理,最后将子任务结果合并成最后的计算结果,并进行输出。
Fork/Join框架提供了工具通过利用所有可用的处理器,来加速任务的并行处理,其思想为分而治之。
Fork/Join框架首先进行Fork(分),递归的将任务分解成更小的、独立的子任务,直到它们足够简单,能被异步执行。
之后,开始进行Join(结果的合并),所有子任务的执行结果将会递归的进行合并,对于没有返回值的任务,程序将会等待子任务执行结束。
为了提供有效的并行执行方法,Fork/Join框架使用了一个叫做ForkJoinPool的线程池,用于管理类型为ForkJoinWorkerThread的工作线程。
总结:Fork/Join 是一个并行计算的框架,主要就是用来支持分治任务模型的,这个计算框架里的 Fork 对应的是分治任务模型里的任务分解,Join 对应的是结果合并。Fork/Join 计算框架主要包含两部分,一部分是分治任务的线程池 ForkJoinPool,另一部分是分治任务 ForkJoinTask。这两部分的关系类似于 ThreadPoolExecutor 和 Runnable 的关系,都可以理解为提交任务到线程池,只不过分治任务有自己独特类型 ForkJoinTask。
1. ForkJoin基本原理
ForkJoin框架使用和原理剖析
参考URL: https://blog.youkuaiyun.com/codingtu/article/details/88729498
ForkJoin框架其实就是一个线程池ExecutorService的实现,通过工作窃取(work-stealing)算法,获取其他线程中未完成的任务来执行。可以充分利用机器的多处理器优势,利用空闲的线程去并行快速完成一个可拆分为小任务的大任务,类似于分治算法。
ForkJoin框架的核心是ForkJoinPool类,基于AbstractExecutorService扩展。ForkJoinPool中维护了一个队列数组WorkQueue[],每个WorkQueue维护一个ForkJoinTask数组和当前工作线程。ForkJoinPool实现了工作窃取(work-stealing)算法并执行ForkJoinTask。
ForkJoinTask是能够在ForkJoinPool中执行的任务抽象类,父类是Future,具体实现类有很多,这里主要关注RecursiveAction和RecursiveTask。RecursiveAction是没有返回结果的任务,RecursiveTask是需要返回结果的任务。只需要实现其compute()方法,在compute()中做最小任务控制,任务分解(fork)和结果合并(join)。
2. ForkJoinPool构造函数
ForkJoinPool有四个构造函数,其中参数最全的那个构造函数如下所示:
public ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
boolean asyncMode)
-
parallelism:可并行级别,Fork/Join框架将依据这个并行级别的设定,决定框架内并行执行的线程数量。并行的每一个任务都会有一个线程进行处理,但是千万不要将这个属性理解成Fork/Join框架中最多存在的线程数量,也不要将这个属性和ThreadPoolExecutor线程池中的corePoolSize、maximumPoolSize属性进行比较,因为ForkJoinPool的组织结构和工作方式与后者完全不一样。而后续的讨论中,读者还可以发现Fork/Join框架中可存在的线程数量和这个参数值的关系并不是绝对的关联(有依据但并不全由它决定)。
-
factory:当Fork/Join框架创建一个新的线程时,同样会用到线程创建工厂。只不过这个线程工厂不再需要实现ThreadFactory接口,而是需要实现ForkJoinWorkerThreadFactory接口。后者是一个函数式接口,只需要实现一个名叫newThread的方法。在Fork/Join框架中有一个默认的ForkJoinWorkerThreadFactory接口实现:DefaultForkJoinWorkerThreadFactory。
-
handler:异常捕获处理器。当执行的任务中出现异常,并从任务中被抛出时,就会被handler捕获。
-
asyncMode:这个参数也非常重要,从字面意思来看是指的异步模式,它并不是说Fork/Join框架是采用同步模式还是采用异步模式工作。Fork/Join框架中为每一个独立工作的线程准备了对应的待执行任务队列,这个任务队列是使用数组进行组合的双向队列。即是说存在于队列中的待执行任务,即可以使用先进先出的工作模式,也可以使用后进先出的工作模式。
当asyncMode设置为ture的时候,队列采用先进先出方式工作;反之则是采用后进先出的方式工作,该值默认为false
ForkJoinPool还有另外两个构造函数,一个构造函数只带有parallelism参数,既是可以设定Fork/Join框架的最大并行任务数量;另一个构造函数则不带有任何参数,对于最大并行任务数量也只是一个默认值——当前操作系统可以使用的CPU内核数量(Runtime.getRuntime().availableProcessors())。
如果你对Fork/Join框架没有特定的执行要求,可以直接使用不带有任何参数的构造函数。也就是说推荐基于当前操作系统可以使用的CPU内核数作为Fork/Join框架内最大并行任务数量,这样可以保证CPU在处理并行任务时,尽量少发生任务线程间的运行状态切换。
3. Fork/Join框架基本使用-fork方法和join方法
Fork/Join框架基本使用
参考URL: https://blog.youkuaiyun.com/tyrroo/article/details/81390202
Fork/Join 计算框架主要包含两部分,一部分是分治任务的线程池 ForkJoinPool,另一部分是分治任务 ForkJoinTask。这两部分的关系类似于 ThreadPoolExecutor 和 Runnable 的关系,都可以理解为提交任务到线程池,只不过分治任务有自己独特类型 ForkJoinTask。
Fork/Join框架中提供的fork方法和join方法,可以说是该框架中提供的最重要的两个方法,它们和parallelism“可并行任务数量”配合工作,可以导致拆分的子任务T1.1、T1.2甚至TX在Fork/Join框架中不同的运行效果。
fork方法用于将新创建的子任务放入当前线程的work queue队列中,Fork/Join框架将根据当前正在并发执行ForkJoinTask任务的ForkJoinWorkerThread线程状态,决定是让这个任务在队列中等待,还是创建一个新的ForkJoinWorkerThread线程运行它,又或者是唤起其它正在等待任务的ForkJoinWorkerThread线程运行它。
这里面有几个元素概念需要注意,ForkJoinTask任务是一种能在Fork/Join框架中运行的特定任务,也只有这种类型的任务可以在Fork/Join框架中被拆分运行和合并运行。
ForkJoinWorkerThread线程是一种在Fork/Join框架中运行的特性线程,它除了具有普通线程的特性外,最主要的特点是每一个ForkJoinWorkerThread线程都具有一个独立的任务等待队列(work queue),这个任务队列用于存储在本线程中被拆分的若干子任务。
join方法用于让当前线程阻塞,直到对应的子任务完成运行并返回执行结果。或者,如果这个子任务存在于当前线程的任务等待队列(work queue)中,则取出这个子任务进行“递归”执行。其目的是尽快得到当前子任务的运行结果,然后继续执行。
4. ForkJoin应用场景
二、demo举例
1. demo: 将1—1001数字相加
Fork/Join框架基本使用
参考URL: https://blog.youkuaiyun.com/tyrroo/article/details/81390202
public class ForkJoinPoolDemo {
private static final Integer MAX = 200;
static class MyForkJoinTask extends RecursiveTask<Integer> {
// 子任务开始计算的值
private Integer startValue;
// 子任务结束计算的值
private Integer endValue;
public MyForkJoinTask(Integer startValue , Integer endValue) {
this.startValue = startValue;
this.endValue = endValue;
}
@Override
protected Integer compute() {
// 如果条件成立,说明这个任务所需要计算的数值分为足够小了
// 可以正式进行累加计算了
if(endValue - startValue < MAX) {
System.out.println("开始计算的部分:startValue = " + startValue + ";endValue = " + endValue);
Integer totalValue = 0;
for(int index = this.startValue ; index <= this.endValue ; index++) {
totalValue += index;
}
return totalValue;
}
// 否则再进行任务拆分,拆分成两个任务
else {
MyForkJoinTask subTask1 = new MyForkJoinTask(startValue, (startValue + endValue) / 2);
subTask1.fork();
MyForkJoinTask subTask2 = new MyForkJoinTask((startValue + endValue) / 2 + 1 , endValue);
subTask2.fork();
return subTask1.join() + subTask2.join();
}
}
}
public static void main(String[] args) {
// 这是Fork/Join框架的线程池
ForkJoinPool pool = new ForkJoinPool();
ForkJoinTask<Integer> taskFuture = pool.submit(new MyForkJoinTask(1,1001));
try {
Integer result = taskFuture.get();
System.out.println("result = " + result);
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace(System.out);
}
}
}
该代码工作顺序图:
图中最顶层的任务使用submit方式被提交到Fork/Join框架中,后者将前者放入到某个线程中运行,工作任务中的compute方法的代码开始对这个任务T1进行分析。如果当前任务需要累加的数字范围过大(代码中设定的是大于200),则将这个计算任务拆分成两个子任务(T1.1和T1.2),每个子任务各自负责计算一半的数据累加,请参见代码中的fork方法。如果当前子任务中需要累加的数字范围足够小(小于等于200),就进行累加然后返回到上层任务中。
2. demo: 统计一个文件里面每个单词的数量
参考URL: https://time.geekbang.org/column/article/92524
static void main(String[] args){
String[] fc = {"hello world",
"hello me",
"hello fork",
"hello join",
"fork join in world"};
//创建ForkJoin线程池
ForkJoinPool fjp =
new ForkJoinPool(3);
//创建任务
MR mr = new MR(
fc, 0, fc.length);
//启动任务
Map<String, Long> result =
fjp.invoke(mr);
//输出结果
result.forEach((k, v)->
System.out.println(k+":"+v));
}
//MR模拟类
static class MR extends
RecursiveTask<Map<String, Long>> {
private String[] fc;
private int start, end;
//构造函数
MR(String[] fc, int fr, int to){
this.fc = fc;
this.start = fr;
this.end = to;
}
@Override protected
Map<String, Long> compute(){
if (end - start == 1) {
return calc(fc[start]);
} else {
int mid = (start+end)/2;
MR mr1 = new MR(
fc, start, mid);
mr1.fork();
MR mr2 = new MR(
fc, mid, end);
//计算子任务,并返回合并的结果
return merge(mr2.compute(),
mr1.join());
}
}
//合并结果
private Map<String, Long> merge(
Map<String, Long> r1,
Map<String, Long> r2) {
Map<String, Long> result =
new HashMap<>();
result.putAll(r1);
//合并结果
r2.forEach((k, v) -> {
Long c = result.get(k);
if (c != null)
result.put(k, c+v);
else
result.put(k, v);
});
return result;
}
//统计单词数量
private Map<String, Long>
calc(String line) {
Map<String, Long> result =
new HashMap<>();
//分割单词
String [] words =
line.split("\\s+");
//统计单词数量
for (String w : words) {
Long v = result.get(w);
if (v != null)
result.put(w, v+1);
else
result.put(w, 1L);
}
return result;
}
}
示例程序用一个字符串数组 String[] fc 来模拟文件内容,fc 里面的元素与文件里面的行数据一一对应。关键的代码在 compute() 这个方法里面,这是一个递归方法,前半部分数据 fork 一个递归任务去处理(关键代码 mr1.fork()),后半部分数据则在当前任务中递归处理(mr2.compute())。
三、参考
java fork-join框架应用和分析
参考URL: https://www.iteye.com/blog/shmilyaw-hotmail-com-1897636
Fork/Join框架(一)引言
参考URL: https://ifeve.com/fork-join-1/
Fork/Join框架基本使用
参考URL: https://blog.youkuaiyun.com/tyrroo/article/details/81390202
ForkJoin框架使用和原理剖析
参考URL: https://blog.youkuaiyun.com/codingtu/article/details/88729498
MapReduce介绍
参考URL: https://blog.youkuaiyun.com/qq_35078688/article/details/83240661