如何使用 DataX 连接 Easysearch

DataX

DataX 是阿里开源的一款离线数据同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。

本篇主要介绍 DataX 如何将数据写入到 Easysearch,对于各种数据源的连接不会做深入的探讨,感兴趣的小伙伴可以访问 DataX 的 Github 仓库查看详情。

下载与安装

DataX 无需安装,下载后解压即可使用。

系统需求:

  1. JDK 1.8 及以上
  2. Python2 或 3

创建任务配置文件

每个数据同步的操作可称为一个任务,任务的配置文件定义了数据源(reader)、数据目的(writer) ,以及任务的设置信息,如并发数、速度控制等。DataX 集成了如此多的数据源,如果靠纯手工编写任务配置显然不现实。官方也出了个命令可以根据指定的数据源和数据目的帮助大家生成任务配置。

python datax.py -r {YOUR_READER} -w {YOUR_WRITER}

测试配置文件

此次演示使用 streamreader 和 elasticsearchwriter 作为数据源和数据目的,任务配置如下:

{
  "job": {
    "content": [
      {
        "reader": {
          "name": "streamreader",
          "parameter": {
            "sliceRecordCount": 10000,
            "column": [
              {
                "type": "long",
                "value": "10"
              },
              {
                "type": "string",
                "value": "hello,你好,世界-DataX"
              },
              {
                "type": "string",
                "value": "hello,你好,Easysearch"
              }
            ]
          }
        },
        "writer": {
          "name": "elasticsearchwriter",
          "parameter": {
            "endpoint": "http://localhost:9200",
            "accessId": "admin",
            "accessKey": "1ef0c661d8562aaa06be",
            "index": "yf-test",
            "column": [
              { "name": "no", "type": "long" },
              { "name": "content", "type": "keyword" },
              { "name": "content2", "type": "keyword" }
            ]
          }
        }
      }
    ],
    "setting": {
      "speed": {
        "channel": 50
      }
    }
  }
}

streamreader 是一个从内存读取数据的插件, 它主要用来快速生成期望的数据并对写入插件进行测试。

我们用 streamreader 构造了 10000 个文档,文档含三个字段,任务启动了 50 个 channel 进行数据发送,结果就是共计发送 50w 个文档。

elasticssearchwriter 指定了 Easysearch 的连接信息:

  • endpoint: Easysearch 的地址和端口
  • accessId: 用户名
  • accessKey: 密码
  • index: 写入索引名
  • column: 对 reader 发来数据的 schema 定义
  • batchsize: 默认 1000

这次我们 Easysearch 开启的 http 服务,因为 DataX 的 elasticsearchwriter 无法跳过证书验证。对于必须使用 https 的场景,可使用 INFINI Gateway 代理 ES 服务,提供 http 通道给离线数据同步专用。

⚠️ 注意:

不同的 reader、writer 对 sliceRecordCount 和 channel 会有不同的行为。

Easysearch

本次测试使用的 Easysearch 版本是 1.9.0,需要注意是 Easysearch 要开启兼容性参数:

elasticsearch.api_compatibility: true

否则创建索引报错退出。(实际索引创建成功了但是 mapping 信息是空的)

运行任务

编辑好任务配置文件后,下一步就是执行任务。

python3 datax.py yf-test.json

写入数据时索引不存在,Datax 根据 schema 定义创建了索引。

OK 任务执行完毕,写入 50w 个文档耗时 10 秒。

内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值